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Abstract

Many policy problems are inherently dynamic. Outcomes worsen over time if policy

is not adapted to changing circumstances. However, even if everyone agrees on how

to address the problem, policy negotiations do not occur in a vacuum. Consequently,

disagreements on more contentious ideological issues can spillover, distorting prefer-

ences and outcomes on the common-values policy problem. In this paper, we develop

a dynamic bargaining model to study when and how this ideological infection emerges.

We find that dynamic policy problems are vulnerable to ideological infection precisely

because the costs of inaction on these issues increase over time. Furthermore, we show

that inefficient policies on the common-values dimension are inevitable when players

anticipate conflict to rapidly intensify on the ideological dimension.
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1 Introduction

Many policy problems are inherently dynamic. A crisis worsens over time if it is unad-

dressed, thus requiring increasingly bolder interventions; infrastructure deteriorates, neces-

sitating greater investment tomorrow; and anticipated innovations alter the optimal level

of investment in green technologies in the future. Given the growing price of inaction on

these issues, we may expect little underlying disagreement among policymakers, at least

on the optimal direction to move policy. However, solutions to these problems are rarely

negotiated in a vacuum. Policy proposals to address such problems are often negotiated,

either explicitly or implicitly, in conjunction with other issues that are more contentious.1

In turn, this bundling of issues may alter the bargaining parties’ strategic incentives to reach

an agreement on these dynamic policy problems.

In this paper, we show that, in these environments, conflict on ideological issues can

spillover and infect bargaining over an evolving common-values policy problem. For example,

due to the joint interests of the United States and China in addressing climate change,

China’s Foreign Minister Wang Yi described the issue as an “oasis,” but went on to state

that “surrounding the oasis is a desert, and the oasis could be desertified very soon. China-

U.S. climate co-operation cannot be separated from the wider environment of China-U.S.

relations.”2 We develop a model to study when and how such ideological infection emerges.

We find that the types of policy problems described above are vulnerable to being infected by

other more contentious issues precisely because of their dynamic nature, whereby the costs

of inaction compound over time. Furthermore, inefficient common-values policies become

inevitable when players also anticipate rapidly intensifying disagreements on the dimension

of conflict. Interestingly, the players delay coming to an efficient agreement today despite

knowing their opponent will become more entrenched tomorrow, and thus less willing to

yield ideological concessions.

In our model, two players repeatedly bargain over both an ideological issue and a common-

values issue. The proposer each period offers a policy on each dimension, and the veto player

accepts or rejects the entire bundle of policies. On each issue, the policy that is implemented

today becomes the status quo tomorrow. To model the dynamic nature of policy issues, we

allow the players’ preferences on both dimensions to evolve over time. On the ideological

dimension players disagree on the optimal policy, and this disagreement may grow over time.

This can capture situations in which political parties expect increasing polarization among

1Bundling unrelated issues together in larger omnibus bills is commonly used in legislative bargaining
(Krutz, 2001; Clinton and Lapinski, 2006; Hazama and Iba, 2017; Meßerschmidt, 2021). Similarly, issue
linkage is an important tactic in international negotiations (Tollison and Willett, 1979; Keohane, 1984).
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their respective constituents or members, and thus anticipate they will have to appeal to

more extreme preferences in the future to maintain the support of their respective bases

(Peltzman, 1984). Alternatively it may capture changes in the environment that intensify

preferences over an issue, e.g., two countries negotiating over a territory that they anticipate

will be more valuable in the future. In contrast, the players’ preferences on the common-

values dimension are fully aligned and thus change in the same way over time, reflecting an

increasing need for investment, shifts in the optimal policy due to technological change, or

the worsening of a crisis.

As highlighted above, the ability to link multiple issues together can alter strategic incen-

tives when bargaining. In a static world, this form of issue linkage generates no detrimental

spillovers from the ideological issue to the common-values one. The efficient policy on the di-

mension of agreement also maximizes the ideological concessions the proposer can obtain. As

such, in equilibrium, there is no ideological infection of preferences over the common-values

dimension, and hence no impediment to the players adopting the commonly beneficial pol-

icy. In a dynamic setting, however, this is not always true. The policy implemented on

the common-values dimension today influences the ideological concessions the proposer can

extract from the veto player tomorrow. In turn, this generates the potential for players to

prefer inefficient policies.

We find that a necessary condition for the players’ preferences on the common-values

dimension to become infected is that the marginal cost of inefficiency on this dimension in-

creases over time. This creates compounding costs on the common-values issue, so that any

residual inefficiency the players inherit from the past becomes more and more detrimental

over time. This condition captures the way in which many policy problems evolve. Under-

investment today becomes even more costly as infrastructure continues deteriorating, or a

pandemic that is left unaddressed spreads more and more rapidly.

Increasing marginal costs of inefficiency ensures that, for one or both players, today’s price

of distorting the common-values policy away from the optimum is smaller than the ideological

concessions this residual inefficiency will buy in the future. Absent this compounding, neither

player is incentivized to pursue an inefficient common-values policy today, since any future

gain on the ideological dimension is completely offset by the cost imposed today by not

moving to the optimal common-values policy. Thus, the equilibrium common-values policy

is always efficient when there are not increasing marginal costs of inefficiency on the common-

values dimension.

Next, we show that, in the presence of compounding costs of inefficiency, rapidly in-

tensifying disagreement on the dimension of conflict is sufficient for ideological infection to

emerge. To see why, suppose that the conflict on the ideological dimension increases slowly.
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In this case, the evolution on the common-values dimension provides the proposer enough

leverage to pass his ideal point tomorrow, even if the policy is efficient today. Thus, the

proposer has no incentive to pursue an inefficient policy today. Under certain values of the

status quo, this is enough to ensure an efficient policy in equilibrium, even with compounding

costs on the common-values dimension.

Conversely, when conflict on the ideological dimension intensifies rapidly, ideological in-

fection of the common-values dimension becomes unavoidable. In this scenario, the proposer

prefers to undershoot the optimal common-values policy today, e.g., underinvest in infrastruc-

ture or only partially address a crisis, to strengthen his bargaining position on the ideological

dimension tomorrow. Instead, the veto player prefers to overshoot the optimal policy today

to constrain the proposer tomorrow, e.g., investing to not only fix but also prevent future

infrastructure decay or further crises. As a consequence, the equilibrium common-values

policy is always inefficient.

Finally, we characterize the form this inefficiency takes in equilibrium and the location of

the ideological policy. Depending on the environment, inefficiency may manifest as proposer-

induced undershooting or veto-induced overshooting. Importantly, we find that, under some

conditions, the proposer undershoots the optimal common-values policy and chooses an

ideological policy to the left of both its first and second-period ideal points.

This form of undershooting on both the common-values and ideological dimension high-

lights that the reason inefficient policies are implemented is not because the proposer does

not ‘need’ leverage today. In our model, inefficiency occurs even when undershooting on the

dimension of agreement fails to give the proposer enough leverage to obtain his first-period

ideal policy on the ideological dimension. In this case, by moving closer to the efficient pol-

icy the proposer could reduce the costs of inefficiency on the common-values dimension and

move ideological policy in his preferred direction. However, increasing marginal costs of in-

efficiency allow the proposer to better leverage the common-values dimension for ideological

concessions in the future. As a result, the proposer sometimes deliberately incurs immedi-

ate costs on the common-values dimension and leaves gains on the table on the ideological

dimension.

1.1 Applications

China, the United States, and Climate Change. The US-China climate cooperation

mentioned above provides an example of ideological infection under evolving policy prob-

lems. The warning of China’s Foreign Minister underscores that climate cooperation cannot

be entirely isolated from other aspects of the bilateral relationship, and suggests that a co-

operative approach to climate change might be difficult to sustain if tensions in other areas
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continue to escalate. Indeed, climate change and the issue of Taiwan are both rapidly evolv-

ing. After a period of fragile reconciliation beginning in the late 1980s, tensions between

China and Taiwan started intensifying with the election of Tsai Ing-wen, from the tradition-

ally pro-independence Democratic Progressive Party, as Taiwan’s first female president in

2016. In this same period, the US has increased its economic relations with Taiwan. These

developments have made the issue more salient for both of the bargaining parties. On the

other hand, climate-induced disasters have grown increasingly severe and frequent,3 Thus,

although both countries agree on the urgent need to address an increasingly costly climate

crisis, their cooperation on climate policy is vulnerable because it can be used as leverage to

gain concessions on the issue of Taiwan’s sovereignty.4

Congress, Conflict Expansion, and Ideological Polarization. Two important obser-

vations often characterize accounts of American politics. First, political parties are growing

increasingly polarized. Looking at the United States Congress, measures of polarization were

quite low until the mid 1970s, but have seen a steep increase since that time (Barber et al.,

2015). Second, while political conflict between the parties has remained organized along clas-

sic dimensions of polarization, other issues ‘have been absorbed into it’ (Barber et al.2015,

p. 23). Indeed, Lee (2005) describes how partisan divisions now extend to issues such as

good government, disaster relief, and transportation programs, areas where we would expect

the preferences of ‘both parties and all voters [to be] located at a single point’ (Stokes 1963,

p. 372).5 As such, political parties appear to be polarized on virtually all policy dimensions,

including those with little or no ideological connotation. Consequently, in recent decades we

have witnessed a stark decrease in the ability of Congress to legislative efficiently, even on

common-values issues (Layman et al., 2006). This case highlights how increasing polarization

can generate ideological infection of common-values policy problems, with the consequence

that ‘public policy does not adjust to changing economic and demographic circumstances’

(Barber et al. 2015, p. 41). In the most severe form of this inefficiency, Congress appears

unwilling to address even the most pressing issues facing the country, instead choosing to

‘kick the can down the road (...) and govern by (artificial) crises’ (Barber et al. 2015, p.

41).

The Shutdown, Budget and Debt Ceiling Negotiations. After Democrats and Re-

publicans failed to reach a timely agreement on a federal budget bill in the fall of 2013,

the US government was forced to suspend most of its routine operations from October 1

3
https://www.pbs.org/newshour/science/scientists-confirm-global-floods-and-droughts-worsened-by-climate-change.

4
https://time.com/6295941/us-china-climate-cooperation-challenge/.

5The insights of our model would still apply if, for example, there is some disagreement about the optimal
degree of disaster relief, but a continuing disaster moves preferences in the same direction.
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to October 17. The consequences included, but were not limited to, approximately 800,000

federal employees being indefinitely furloughed, and another 1.3 million required to report

to work without known payment dates.

Despite these negative consequences, the shutdown was the result of a deliberate bar-

gaining strategy. Several factions within the Republican party aimed to create a funding gap

and use the threat of a shut down to increase their bargaining leverage and secure policy

concessions on other issues, in particular, defunding the Affordable Care Act. Indeed, several

Republicans openly welcomed the shutdown. Minnesota Representative Michele Bachmann,

for example, stated she was ‘very excited’ about ‘getting exactly what we wanted’.6

For their part, Democrats also recognized the strategic implications of bundling a resolu-

tion to the shutdown with more ideological issues. Hours before the start of the shutdown,

Republicans in the House attempted to start budget conference-committee negotiations, but

Democratic Senate Majority Leader Harry Reid declared: ‘We will not go to conference

with a gun to our head’.7 In the days that followed, the House of Representatives proposed

several piecemeal bills to fund specific critical agencies and the city of Washington, D.C..

However, the Democratic Senate leadership and President Obama refused to approve these

bills, likely recognizing that this would weaken their position in future negotiations. Indeed,

President Obama sought to further expand the scope of negotiations by explicitly linking the

government shutdown to the impending debt ceiling crisis, stating that he would not reopen

budget negotiations until Republicans agreed to passage of a bill raising the debt limit.8

In each of these cases, our model offers a possible explanation for why a dynamic pol-

icy problem, over which the bargaining players have roughly similar preferences, becomes

entangled in ideological conflict, leading to infected preferences on the common-values issue

and inefficiencies in policy implementation.

1.2 Contribution to the Literature

Our research contributes to the extensive political economy literature that explores bargain-

ing with an endogenous status quo.9 However, the mechanism that generates inefficiency in

our setting differs from those in the literature. Previous papers have found inefficiencies that

stem from motives such as insurance against turnover (Buisseret and Bernhardt, 2017) or the

possibility of developing future conflict on the issue (Riboni and Ruge-Murcia, 2008; Zápal,

2011; Dziuda and Loeper, 2016; Austen-Smith et al., 2019). In contrast, in our model, dis-

6
http://www.washingtonpost.com/politics/on-cusp-of-shutdown-house-conservatives-excited-say-they-are-doing-the-right-thing/2013/09/28/

2a5ab618-285e-1le3-97e6-2e7cadlb77e-story.html, archived at http://perma.cc/69K5-27BG.

7
https://www.nbcnews.com/video/reid-we-will-not-go-to-conference-with-a-gun-to-our-head-51143747771.

8
https://www.bbc.com/news/world-us-canada-24375591.

9See Eraslan et al. (2022) for a review of this literature.
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tortions are due to the multidimensionality of the policy space combined with the evolution

of preferences over time.10 We demonstrate that in a multidimensional world preferences

over a common-values issue can become distorted even when the proposer is guaranteed to

remain in power indefinitely, and the players are certain they will never disagree on this

dimension.11 As such, the potential for inefficiency to emerge may be even more severe than

previously shown.

Closer to our paper, Callander and Martin (2017) studies an endogenous status quo bar-

gaining model where policies have an ideological and a (common-values) quality component.

Quality decays over time but can be restored. However, in Callander and Martin (2017)

there is never inefficiency on the equilibrium path of play, i.e., the proposer never underin-

vests in quality for future leverage. Our analysis highlights two important features of the

environment that drive this difference in outcomes. First, we find that the proposer develops

a preference for inefficiency only when players anticipate intensifying disagreements on the

dimension of conflict in the future. Polarization on the ideological dimension does not change

over time in Callander and Martin (2017), and therefore proposer-induced inefficiency cannot

arise. Second, in Callander and Martin (2017) parties cannot overinvest in quality today to

avoid future decay. Thus, the veto-player induced overshooting inefficiency that emerges in

our setting cannot occur in their model.

Two previous papers have analyzed how dynamic incentives can lead to inefficient agree-

ments and delay when players bargain over multiple issues (Acharya and Ortner, 2013; Lee,

2020).12 The emergence of inefficiency in both of these papers depends on two assumptions.

First, not all issues (or goods) are immediately available for the players to bargain over.

Second, the two players place different weights on each issue.13 Under these assumptions,

agreements may be delayed because one player values today’s issues less and waits to bundle

with his preferred issues when it becomes available in the future. In our model, neither

of these features are present, rather we assume preferences can evolve over time and ineffi-

10Previous papers in this literature that incorporate multiple policy dimensions have focused on issues of
existence (Duggan and Kalandrakis, 2012) and indeterminacy (Anesi and Duggan, 2018). Chen and Eraslan
(2017) also analyzes dynamic bargaining with multiple policy dimensions, but assumes parties can only
address one issue at a time. Instead, we specifically focus on the effects of bundling different dimensions.

11This distinguishes our work from papers that find strategic polarization on a single dimension that can
exhibit conflict (Dziuda and Loeper, 2018). Penn (2009) allows for multiple dimensions and characterizes
how continuing policies distort preferences. However, proposals are exogenous in her model, which focuses
on voting behavior. In contrast endogenous proposals are a crucial determinant of preferences our model.

12Other works study the effects of bundling different dimensions, but consider a one-shot interaction or
assume bargaining concludes once an agreement is reached (e.g., Fershtman, 1990; Jackson and Moselle,
2002; Chen and Eraslan, 2013; Câmara and Eguia, 2017). Consequently, the inefficiencies we find due to
evolving preferences and an endogenous status quo do not arise in these models.

13In Lee (2020), on each issue both players prefer the alternative policy to the status quo, but the payoff
they obtain from the alternative is different.
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ciency in multi-issue bargaining arises due to increasing marginal costs on the common-values

dimension.14

This difference in mechanisms is emphasized by our finding that the proposer sometimes

pursues an inefficient common-values policy even when doing does not allow him to pull the

ideological policy at least to his first-period ideal point. That is, the proposer undershoots

on the common-values despite “needing” more leverage today on the ideological dimension.

Instead, in Acharya and Ortner (2013) and Lee (2020) players may not “need” leverage

today if not all issues are available to bargain over. Under this condition, asymmetry in the

players’ evaluation of the different issues then allows for the costs of inefficiency to be lower

than the future gains, leading to delay. In the Appendix, we formalize the difference between

these papers and our mechanism. We shut down compounding costs on the common-values

issue but allow the players to weight the dimensions differently. We show that, while the

policy outcome can be inefficient, the proposer only ever maintains leverage on the common-

values dimension if he also pulls the ideological policy at least as far as his first-period

ideal point. That is, in this setting, which resembles Acharya and Ortner (2013) and Lee

(2020), the proposer only keeps leverage for tomorrow when he does not need more leverage

today. Thus, our paper complements these works by uncovering a novel mechanism by which

dynamic bargaining over multiple issues can cause inefficiency, one which applies to evolving

policy problems.

Finally, our work is also related to studies that analyze multidimensional bargaining

where players can make transfers to each other (e.g., Austen-Smith and Banks, 1988; Dier-

meier and Merlo, 2000). Similar to a transfer, our proposer can use the common-values

dimension to obtain favorable policy on the partisan dimension. However, the common-

values dimension differs from a transfer because both players benefit from moving policy to

the common-values ideal point, therefore inefficiency is costly for the proposer as well. Thus,

leaving leverage for the future on the common-values dimension is always Pareto inefficient.

Other studies analyze how bargaining players divide a budget between private benefits and

public goods (e.g., Battaglini and Coate, 2007; Volden and Wiseman, 2007). In such settings,

a proposer may have incentives to underprovide on the public good dimension to extract the

maximum private transfers for itself. In this context, Bowen et al. (2014) show that an

endogenous status quo, i.e., mandatory public good spending, can actually help correct the

inefficiencies that would emerge in a static setting. This contrasts with our setup, where the

endogenous status quo is precisely what generates inefficiency.

14A further difference is that we consider a setting where players can pass policy on the same issue multiple
times, while agreement in Acharya and Ortner (2013) and Lee (2020) settles (at least partially) the issue.
Additionally, there is no scope for veto-player induced overshooting in either paper. On the other hand, our
model abstracts from elections, whereas Lee (2020) explicitly incorporates voters.
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2 The Model

Players and policies. There are two players, a proposer (P ) and veto (V ), who interact

over two periods, t ∈ {1, 2}. The policy space is composed of an ideological dimensionX = R
and a common-values dimension Y = R. In every period t, the players bargain to determine

a policy outcome (xt, yt) ∈ X × Y = R2.

Preferences. The stage utility to player i ∈ {P, V } in period t from a policy outcome (x, y)

is uit(x) + vt(y), where we define uit(x) = u(x − x̂i
t) and vt(y) = v(y − ŷt). We assume v

is single-peaked at ŷt, u is strictly concave and single-peaked at x̂i
t, and all functions are

twice-differentiable. Thus, player i’s statically optimal policy in period t is given by its

ideal point (x̂i
t, ŷt) ∈ R2. Additionally, let uit(x̂

i
t) = vt(ŷt) = 0. In each period, player

P ’s preferred ideological policy is to the right of player V , x̂V
t < x̂P

t , and conflict on the

ideological dimension (weakly) increases over time, x̂V
2 ≤ x̂V

1 < x̂P
1 ≤ x̂P

2 . To reduce the

number of cases, on the common-values issue we assume the shared ideal policy (weakly)

increases over time, ŷ1 ≤ ŷ2.

The sequence of ideal policies is common knowledge. Thus, the evolution of preferences

is deterministic and the parties in our model face no uncertainty.

Player i’s payoff in the dynamic game is given by:∑
t∈{1,2}

uit(xt) + vt(yt),

where for simplicity we assume no discounting.

Political environment. At the start of each period t ∈ {1, 2} player P makes a proposal

(xt, yt) ∈ R2, which consists of a policy on the ideological issue, xt ∈ X, and a policy on

the common-values issue, yt ∈ Y . Next, player V decides whether to accept or reject the

proposal. If the proposal is accepted then the policy outcome in period t is (xt, yt). If the

proposal is rejected then the policy outcome in period t is (xq
t , y

q
t ) ∈ R2, where (xq

t , y
q
t ) is the

status quo in period t. Thus, proposals on the two dimensions are bundled together.

The policy outcome in the current period becomes the status quo in the subsequent pe-

riod. Thus, if (x1, y1) is the policy outcome in period 1 then the status quo in period 2 is

(xq
2, y

q
2) = (x1, y1). The status quo at the beginning of the game is exogenously set at (xq

1, y
q
1).

Discussion of the model. In our baseline model there is no turnover in proposers, no

uncertainty about changes in ideal points, and no asymmetry across players’ utility functions
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(besides ideal points). These assumptions allow us to isolate the mechanism that drives our

results, while shutting down features that have previously been shown to cause inefficiency.

Additionally, we consider a two-period model in order to obtain sharper results. However,

none of these assumptions undermine the core mechanism of our model. We later consider

extensions relaxing each of these assumptions.

In order to more clearly illustrate our results, we assume the players share exactly the

same ideal policy on the Y dimension. However, our intuitions apply broadly to cases in

which players face some disagreement on this dimension, but the status quo is outside of

the gridlock interval and the players’ ideal points shift in the same direction over time. This

would guarantee that, on the Y dimension, players always agree on the optimal direction

of policy change. In contrast, the assumption that x̂V
2 ≤ x̂V

1 < x̂P
1 ≤ x̂P

2 ensures that

the X dimension always features conflict and thus distinguishes it from a common-values

dimension.15. Absent this assumption, a policy that is in the gridlock interval on X in the

first period can become unstuck, even without the Y dimension, if the ideal points of both

players move closer together or shift in the same direction in the second period. Indeed, our

analysis highlights that in a dynamic setting distinguishing policy issues that feature conflict

from those with common values depends both on the current location of ideal points and

how these ideal points change over time.

The key feature of our model is that ideal points are indexed by the time period t, hence,

the players’ preferences may change over time. Figure 1 depicts an example of this evolution.

To clearly illuminate our mechanism we limit the number of degrees of freedom by fixing

the shapes of v and u across periods. However, under relatively mild assumptions, which

ensure that players still become more entrenched on the X dimension between periods, our

results are robust even if we allow these shapes to change as well. Thus, the insights of our

model can apply to a broad number of ways in which preferences may change. We discuss

the effects of letting v and u change over time in Section 4.

A definition of efficiency. We conclude this section by establishing terminology for a

policy to be efficient.

Definition 1. A policy outcome (xt, yt) in period t is efficient if it sets the common-values

policy at yt = ŷt. Otherwise, a policy (xt, yt) is inefficient.

According to our definition, an inefficient outcome is always Pareto inefficient as well.

Specifically, Pareto efficiency requires (xt, yt) ∈ [x̂V
t , x̂

P
t ] × {ŷt}, i.e., efficiency on Y and

15Likewise, assuming u is concave ensures that the players become more resistant to changes on the X
dimension when their ideal points move apart, capturing the idea of increasing conflict. We further discuss
this point in Section 4.1
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Figure 1: Example of increasing polarization in the evolution of preferences.

policy in the gridlock interval on X. Given our focus on understanding when players cannot

agree on the common-values issue, our definition sidesteps that even with efficiency on the

common-values dimension the outcome may be Pareto inefficient if the ideological policy xt

is not in the interval [x̂V
t , x̂

P
t ].

3 Analysis

Moving to the analysis, our solution concept is subgame perfect equilibrium and we proceed

by backwards induction. In the second period, players only consider their static payoffs.

Thus, V accepts any policy (x, y) such that:

uV 2(x) + v2(y) ≥ uV 2(x
q
2) + v2(y

q
2). (1)

V is only willing to accept an ideological policy that moves farther away from its ideal

point on X if the proposal improves on the common-values status quo. Consequently, if the

inherited status quo is inefficient, yq2 ̸= ŷ2, then P can extract concessions on the conflict

dimension by proposing a bundle that moves the common-values policy closer to ŷ2.

In equilibrium, P chooses its proposal to maximize uP2(x) + v2(y) subject to (1). Let

x(xq
2, y

q
2) be the upper solution to:

uV 2(x) + v2(ŷ2) = uV 2(x
q
2) + v2(y

q
2). (2)

Lemma 1 characterizes P ’s optimal second-period proposal. All proofs are in the Appendix.

Lemma 1. In the second period P proposes y∗2 = ŷ2 and x∗
2(x

q, yq) = min
{
x̂P
2 , x(x

q
2, y

q
2)
}
.

Proposing y = ŷ2 maximizes V ’s utility from the offer on the common-values dimension,

and thus maximizes V ’s willingness to accept a worse payoff on the ideological dimension. As

10



such, the efficient policy y = ŷ2 both maximizes P ’s payoff on the common-values dimension

and the extent to which P can move the outcome towards its ideal policy x̂P
2 . Therefore,

the equilibrium policy outcome is always efficient, emphasizing that the ability to bundle

dimensions does not lead to inefficiency absent dynamic motives.

Turning to the first period, let Uq = uV 1(x
q
1)+ v1(y

q
1)+u

(
x∗
2(x

q
1, y

q
1)
)
denote V ’s dynamic

equilibrium payoff from keeping the status quo. Thus, in the first period V accepts a proposal

(x, y) if:

uV 1(x) + v1(y) + uV 2

(
x∗
2(x, y)

)
≥ Uq,

and rejects otherwise. Facing this constraint from V , in the first period player P chooses

(x, y) ∈ R2 to solve the following maximization problem:

max
x,y

uP1(x) + v1(y) + uP2

(
x∗
2(x, y)

)
(3)

s.t. uV 1(x) + v1(y) + uV 2

(
x∗
2(x, y)

)
≥ Uq

In equilibrium, the first-period policy thus balances P ’s static preferences against its

dynamic incentives, while still appeasing V . As such, the policy depends crucially on the

players’ dynamic preferences over policies. In particular, players’ optimal policies induced

by these strategic considerations are central to our concept of ideological infection. It is

therefore useful to introduce the following definition of a player’s dynamic ideal point.

Definition 2. Player i’s dynamic ideal point (x̂i
d, ŷ

i
d) solves

max
x,y

ui1(x) + v1(y) + ui2

(
x∗
2(x, y)

)
.

Thus player i’s dynamic ideal point is the policy that i would choose to implement today,

anticipating bargaining tomorrow.

Lemma 2 provides an initial characterization of these dynamic ideal points.

Lemma 2. On the Y dimension ŷPd ≤ ŷ1 ≤ ŷVd . On the X dimension x̂V
2 ≤ x̂V

d ≤ x̂V
1 and

x̂P
1 ≤ x̂P

d ≤ x̂P
2 .

Although both players prefer the efficient common-values policy today, their incentives to

influence future policy outcomes can lead to divergent dynamic preferences. From equation

(1), we see that moving yq2 further from ŷ2 increases x(x
q
2, y

q
2), i.e., it increases the proposer’s

second-period leverage. As such, the proposer’s second-period equilibrium payoff increases

when the inherited common-values policy is further from ŷ2, as shown in Figure 2. Conversely,
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Figure 2: Second-period equilibrium payoffs as a function of yq2, if players have quadratic utility

on both dimensions.

the veto player’s second-period payoff increases when y1 moves closer to ŷ2, as this limits

the proposer’s leverage in the second period. Consequently, P prefers a policy that weakly

undershoots the efficient common-values policy, ŷPd ≤ ŷ1 < ŷ2, while V prefers a policy

that weakly overshoots it, ŷ1 ≤ ŷVd < ŷ2. As we will show, under some conditions these

inequalities hold strictly, leading to ideological infection.

Notice that each player’s dynamic preferences on the conflict dimension can also be

distorted from its static ideal policy. For player i a policy closer to x̂i
2 improves its equilibrium

policy payoff tomorrow and worsens the other player’s. As such, each player’s dynamic ideal

point lies in between the first and second-period optimum.

It is important to note that this distortion of preferences on X would emerge even in

a model without the Y dimension. Absent the Y dimension, policy is always stuck (in

the gridlock interval) and P ’s dynamic ideal point is again in (x̂P
1 , x̂

P
2 ), as this balances its

payoff from today versus tomorrow. In contrast, in a model with only the Y dimension

there is no difficulty in agreeing to the efficient policy today and tomorrow. Consequently,

any preference divergence on the common-values dimension is due solely to the existence of

multiple dimensions.

We now formally introduce the concept of ideological infection.

Definition 3. If ŷPd = ŷVd = ŷ1 there is no ideological infection. Otherwise, if ŷPd ̸= ŷVd then

there is ideological infection. In particular, if ŷid ̸= ŷ1 then i’s preferences are infected.

Ideological infection emerges when one (or both) players prefer an inefficient common-

values policy in the first period. In the subsequent sections, we unpack the conditions under

which ideological infection occurs, when infection leads to inefficient policy outcomes, and

the form of inefficiency that emerges.

12



3.1 The Role of Compounding Costs of Inefficiency

We first provide a necessary condition for ideological infection to emerge. Although players

have dynamic incentives to distort policy in the first period, any inefficiency exploited to gain

an advantage tomorrow imposes a cost on both players today. Thus, the players’ dynamic

incentives do not necessarily lead to infection of preferences on the common-values dimension.

We show that the key feature is whether the gains from moving policy to be more efficient are

relatively greater in the second period or the first. Specifically, whether ideological infection

can occur in equilibrium depends on the marginal cost of an inefficient policy in the first

period versus the second period. We describe this condition with the following definition:

Definition 4. The costs of inefficiency are compounding over time if the following condition

holds:

v′2(y) > v′1(y) for y ≤ ŷ1. (4)

Otherwise, if v′2(y) ≤ v′1(y) for y ≤ ŷ1 then the costs of inefficiency are not compounding

over time.

Notice that if the costs of inefficiency do not compound over time then it must be the case

that ŷ1 = ŷ2, as otherwise v′2(ŷ1) > 0 = v′1(ŷ1). Instead, if (4) does hold then we must have

ŷ1 < ŷ2. Thus, in our baseline model, the costs of inefficiency compounding is equivalent

to movement in the common-values ideal point. We adopt the definition of compounding in

terms of condition (4), rather than the change in ŷt, because we later allow the shape of v

to change over time. Under this generalization, the two concepts are no longer equivalent

and it becomes clear that increasing marginal costs of inefficiency is the crucial necessary

condition for ideological infection.

To see the importance of compounding costs for infection, first consider P ’s preferences.

To clarify the discussion, assume x∗
2(x, y) = x(x, y), thus, P ’s dynamic ideal point solves:

u′
P1(x) +

u′
P2(x(x, y))

u′
V 2(x(x, y))

u′
V 2(x) = 0 (5)

v′1(y) +
u′
P2(x(x, y))

u′
V 2(x(x, y))

v′2(y) = 0. (6)

Equations (5) and (6) together yield that at P ’s dynamic ideal point:

u′
P1(x)

u′
V 2(x)

=
v′1(y)

v′2(y)
= −u′

P2(x(x, y))

u′
V 2(x(x, y))

> 0. (7)
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Condition 7 captures that P faces a tradeoff between maximizing its first-period payoff

versus setting itself up for the future by minimizing V ’s utility from the status quo in the

second period. Indeed, we can rewrite the first equality of (7) as
u′
P1(x)

v′1(y)
=

u′
V 2(x)

v′2(y)
. That is, at

(xd
P , x

d
V ), P ’s first-period marginal rate of substitution between dimension X and dimension

Y is equal to L’s second-period marginal rate of substitution between X and Y . For x < x̂P
1 ,

increasing x increases P ’s payoff today and tomorrow, but for x > x̂P
1 further increasing

x decreases its first-period payoff. On the common-values dimension, increasing y towards

ŷ1 improves P ’s first-period utility on Y and makes V more willing to shift policy to the

right on X, which improves P ’s first period ideological payoff. However, it comes at the cost

of increasing v2(y), which decreases P ’s leverage in the second period. The optimal policy

bundle for P balances these considerations.

Consequently, whether P ’s preferences on Y are distorted depends on if improving the

policy on Y makes V more willing to concede policy on the X dimension today or tomorrow.

Under v′2(y) ≤ v′1(y) for y < ŷ1, the increase in V ’s payoff from moving y towards ŷ1 is weakly

greater in the first period than in the second. This induces P to use any available leverage

today rather than save it for tomorrow. The opposite holds if v′2(y) > v′1(y) for y < ŷ1,

i.e., costs of inefficiency compound over time. In this case, the proposer can obtain greater

concessions from the veto player by reducing inefficiency on the common-values dimension in

the second period, which generates incentives to pursue inefficient policies that undershoot

ŷ1 in the first.

Figure 3 further illustrates the implications of compounding costs for ideological infection,

considering an example where v is concave. Recall that an inefficient policy that undershoots

ŷ1 imposes costs on both parties in the first period and increases the cost to the veto player

for maintaining the status quo in the second period. In turn, this allows P to pull x2 closer

to x̂P
2 . Under concavity, the condition that v′2(y) > v′1(y) for y < ŷ1 implies that:

|v2(y)− v2(ŷ1)| > |v1(y)− v1(ŷ1)| (8)

for any y < ŷ1. In turn, inequality (8) indicates that the increased second-period cost on the

veto player is greater than the cost that both parties pay for inefficiency in the first period

(as shown in Figure 3). This wedge in the cost of residual inefficiency today and tomorrow

creates the possibility for P to benefit from a policy that undershoots the static optimum

on Y . If instead condition v′2(y) ≤ v′1(y) for y < ŷ1, then tomorrow’s ideological gains are

always lower than today’s cost of inefficiency, and no ideological infection emerges.

Finally, a similar logic explains V ’s dynamic preferences. Again, assume x∗
2(x, y) =

x(x, y), i.e., it is not optimal to choose (x, y) such that P gets its second-period ideal point.
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Figure 3: Common-values utility in first and second period.

V ’s dynamic ideal point then solves
(
xV
d , y

V
d

)
solves:

u′
V 1(x) + u′

V 2(x) = 0 (9)

v′1(y) + v′2(y) = 0. (10)

Here, V ’s second-period equilibrium payoff is equivalent to its first-period payoff because

P holds the proposal power. In turn, V ’s dynamic ideal point acts as if policy will be stuck at

the first-period policy outcome. Accordingly, V wants to exactly balance its marginal utility

on the common-values dimension from today and tomorrow (and same for the ideological

dimension). If costs of inefficiency do not compound over time, then we have that v′2(y) ≤
v′1(y), and thus ŷ1 = ŷ2. When ŷ1 = ŷ2, the efficient first-period policy is also the policy that

minimizes the proposer’s leverage in the second period. Consequently, the efficient policy

is dynamically optimal for the veto player. As such,
v′2(y)

v′1(y)
≤ 1 immediately removes any

distortion of V ’s preferences. If instead
v′2(y)

v′1(y)
> 1 then the wedge in the cost of residual

inefficiency opens the possibility that V benefits from overshooting ŷ1, and therefore V ’s

preferences may be infected.

Building on this discussion, Proposition 1 shows that the absence of compounding elim-

inates ideological infection.

Proposition 1. If v′1(y) ≥ v′2(y) for all y ≤ ŷ1 then there is no ideological infection, ŷPd =

ŷVd = ŷ1. Furthermore, the policy outcome is efficient, y∗1 = ŷ1.

Absent ideological infection neither player has a preference for inefficiency, and the players

have no difficulty coming to an efficient agreement. Thus, on issues for which the cost of

inefficiency does not compound over time, efficiency prevails.
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3.2 The Role of Increasing Ideological Conflict

Our previous results establish that compounding in the costs of inefficiency is a necessary

condition for ideological infection. We now complete the analysis by showing that whether

infection actually emerges in equilibrium also depends on the evolution of preferences on

the X dimension. We find that, with increasing marginal costs of inefficiency, a sufficient

condition for infection is rapidly increasing conflict on the ideological dimension. Throughout

this section we maintain the assumption that costs of inefficiency are compounding over time.

Assumption 1. The costs of inefficiency are compounding over time:

v′2(y) > v′1(y) for all y ≤ ŷ1. (11)

To characterize the conditions under which each player’s preferences are infected we first

define two cut-points:

uP ≡ uV 2(x̂
P
1 ) + v2(ŷ1), (12)

uV ≡ uV 1(x̂
V
α ) + v1(ŷ

V
α ) + uV 2(x̂

V
α ) + v2(ŷ

V
α ), (13)

where (x̂V
α , ŷ

V
α ) is defined as the solution to the equations (9) and (10). Thus, (x̂V

α , ŷ
V
α )

characterizes V ’s dynamic ideal point in the case where P does not obtain x̂P
2 in the second

period. Proposition 2 now characterizes when each player’s preferences are infected.

Proposition 2.

1. V ’s preferences are infected if and only if uV 2(x̂
P
2 ) < uV ; and

2. P ’s preferences are infected if and only if uV 2(x̂
P
2 ) < uP .

Furthermore, uP < uV .

Whether compounding costs of inefficiency generate infection depends on the anticipated

degree of conflict in the future, characterized by uV 2(x̂
P
2 ). To see why, consider the condition

for P ’s preferences to not be infected:

uV 2(x̂
P
2 ) + v2(ŷ2) ≥ uP = uV 2(x̂

P
1 ) + v2(ŷ1) (14)

In this case, the increase in conflict on the ideological dimension is low relative to the

change on the common-values dimension. Specifically, if condition (14) is satisfied then P

has enough leverage in the second period to pass its ideal point, even if the status quo is

at the first-period efficient policy ŷ1. As such, P has no incentive to undershoot on the
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common-values dimension, or implement an extreme policy on the ideological dimension. In

contrast, if the players anticipate significant conflict in the second period, uV 2(x̂
P
2 ) < uP ,

then P does not have enough leverage to get its preferred policy when the inherited status

quo is (x̂P
1 , ŷ1). Consequently, P ’s dynamically optimal policy undershoots the efficient ŷ1.

Notice that we can rewrite condition (14) as uV 2(x̂
P
1 )− uV 2(x̂

P
2 ) ≤ v2(ŷ2)− v2(ŷ1). Thus,

under this condition, the conflict on the ideological dimension increases slowly relative to

the evolution of the common-values issue. If the players’ ideal points on X are the same in

period 2 and in period 1, then uV 2(x̂
P
1 ) = uV 2(x̂

P
2 ), and condition (14) always holds. As a

result, infection of the proposer’s preferences requires conflict on the ideological dimension

to increase over time. Furthermore, this increase needs to be sufficiently rapid relative to

the evolution of the common-values dimension.

A similar calculation determines whether the veto’s preferences are infected. If there is

sufficiently little disagreement in the second period, then the proposer can obtain x̂P
2 even

if the first-period policy overshoots ŷ1. In turn, inefficiency does not constrain P in the

second period, and V ’s optimal first-period policy is (x̂V
1 , ŷ1). Additionally, because P holds

the bargaining power, the anticipated amount of conflict needed to induce infection in V ’s

preferences is lower than the amount needed to infect V , uV < uP . Specifically, it is easier

for P to move policy to (x̂P
2 , ŷ1) from (x̂P

1 , ŷ1) than from (x̂V
1 , ŷ1).

We note that, if ŷ2 − ŷ1 is not too large, then uV 2(x̂
P
1 ) < uV . Therefore, infection of V ’s

preferences can emerge even if there is no change on the ideological dimension across periods.

However, if ŷ2 − ŷ1 is sufficiently large, then infection of the veto player’s preferences also

requires rapidly increasing disagreement on the dimension of conflict.

The above discussion highlights that a significant increase in the intensity of the ideolog-

ical conflict from the first to the second period is necessary and sufficient to ensure that both

parties’ preferences are infected (illustrated in Figure 4). As Proposition 3 now establishes,

this makes an inefficient equilibrium policy inevitable.

Proposition 3.

1. Assume V ’s preferences are infected but P ’s preferences are not. If Uq ≤ uV 1(x̂
P
1 ) +

uV 2(x̂
P
2 ) then the equilibrium policy is efficient. Otherwise, the equilibrium policy is

inefficient for almost all (Uq, x̂
V
1 ).

2. If both players’ preferences are infected then the equilibrium policy is inefficient for

almost all (Uq, x̂
V
1 ).

If only the veto player’s preferences are infected, i.e., uP < uV 2(x̂
P
2 ) < uV , then the

equilibrium policy on the common-values dimension may still be efficient. When the initial
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Figure 4: Dynamic ideal points under rapidly increasing polarization.

status quo Uq is bad for the veto player, the proposer can pass its optimal bundle. In

particular, following our previous discussion, P can obtain its statically optimal bundle in

both periods and the equilibrium is efficient. Otherwise, if Uq is high, then the proposer is

constrained in the first period. Thus, to appease the veto player, P proposes an inefficient

policy, even though P ’s own preferences are not infected.

Instead, if the preferences of both players are infected, which occurs when uV 2(x̂
P
2 ) < uP ,

then inefficiency is inevitable. The efficient policy always leaves P with too little or too

much leverage in the future. Thus, by Proposition 2, we should expect inefficiency to be

most pervasive when players anticipate the conflict to intensify rapidly.

Having established the conditions for the emergence of inefficiency, we conclude this

section by analyzing the nature this inefficiency takes in equilibrium and how it influences

the policy on the ideological dimension. In particular, the value of Uq is crucial in determining

the policy outcome. Suppose that uV 2(x̂
P
2 ) < uP , so the policy is (almost) always inefficient.

When Uq is very low, the status quo is highly favorable to the proposer. Consequently, P

can pass a policy close to its unconstrained optimum; hence, y∗1 < ŷ1 and x∗
1 > x̂1, aligning

with the proposer’s dynamic preferences. A similar symmetric logic holds when Uq is very

high. The status quo is very favorable for the veto player, and therefore P has little leverage

to pull the conflict-dimension policy close to its first-period ideal. Thus, P needs to propose

a policy close to V ’s dynamic ideal point, binding himself in the future to obtain larger

concessions today. The equilibrium in this case is characterized by a veto-player-induced

inefficiency. The common-values policy overshoots the first-period ideal, y∗1 ∈ (ŷ1, ŷ
V
d ), and

the conflict policy remains below P ’s ideal point, x∗
1 < x̂P

1 .

More interesting is the case where neither player is initially strongly advantaged by the

status quo, i.e., when Uq is intermediate. Intuition may suggest that undershooting on the

common-values dimension should only emerge when the proposer does not need leverage in
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Figure 5: Players’ dynamic ideal points and indifference curves with quadratic utility (blue for the

veto player, red for the proposer). The left-most panel considers Uq < U . In the middle panel we

have Uq ∈ (U,U). In the right-most panel we set Uq > U . Generated from a numerical example

where players have quadratic utility over both dimensions.

the first period. That is, if P can pass x̂P
1 without moving the Y dimension status quo all the

way to the efficient ŷ1, and thus chooses to maintain some inefficiency to increase leverage

for the future. Our next result shows that this is not always the case in our setting:

Proposition 4. Assume uV 2(x̂
P
2 ) < uP . There exists an open interval (U q, U q), such that,

if Uq ∈ (U q, U q) then x∗
1 < x̂P

1 and y∗1 < ŷ1.

When V ’s payoff from the status quo is intermediate the proposer undershoots on the

common-values dimension, y∗1 < ŷ1, and proposes an ideological policy to the left of both

its first- and second-period ideal points, x∗
1 < x̂P

1 . In this case, the proposer could move

policy closer to x̂P
1 — potentially even obtaining its first-period ideologically preferred policy.

However, doing so requires satisfying the veto player by moving the common-values policy

closer to ŷ2, reducing P ’s future leverage. In equilibrium, undershooting occurs despite

the proposer needing more leverage today. The reason P is willing to forgo gains today

is precisely because there are compounding costs of inefficiency on the Y dimension: the

proposer can buy even more concessions tomorrow than it can today by implementing the

efficient ŷ1 and moving x further right. Thus, P chooses to incur immediate costs on the

common-values dimension and forgoes gains on the ideological dimension.

Figure 5 provides an illustration of the first-period equilibrium under the assumption

that the players’ have quadratic-loss preferences on each dimension in each period.16

16Under quadratic utility whether the equilibrium policy undershoots or overshoots ŷ1 is fully determined
by a unique cutoff in Uq. However, providing a full characterization under more general functional forms is
challenging, as the equilibrium policy may cross ŷ1 multiple times and thus not be monotonic in Uq.
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4 Extensions

In this section we extend the model in several directions. First, we provide a more general

condition that captures the concept of increasing conflict on the ideological dimension and

allows for the shape of the players’ utility functions to change over time. Next, we examine

the conditions for ideological infection of the players’ preferences to emerge if there is turnover

in the proposer, or if the change in ideal points between periods is stochastic. Finally, we

study bargaining over a longer time horizon. This final analysis further emphasizes how the

speed at which conflict increases on X relative to the compounding costs of inefficiency on

Y matters for the persistence of inefficient policies.

4.1 Changing Shapes of the Utility Functions

In our baseline model, we allow the players’ ideal points to change over time but assume

the shape of their utility function is fixed. Here, we relax this assumption and allow both

the location of the ideal policies and the shape of the utility functions to evolve. We thus

index the functions u and v by time so that uit(x) = ut(x − x̂i
t) and vt(y) = vt(y − ŷt), but

maintain all the other assumptions.

We begin by providing a condition on how the utility functions over the X dimension

change over time that ensures our earlier results carry through to this richer setting.

Proposition 5. Assume the following conditions on u1 and u2:

u′
V 2(x) ≤ u′

V 1(x) and u′
P1(x) ≤ u′

P2(x) for all x ∈ [x̂V
2 , x̂

P
2 ]. (15)

Then the previous results hold exactly as stated.

Assumption (15) states that for each player the marginal cost of moving policy away

from its ideal point on X becomes greater over time. This assumption is consistent with

our consideration of X as a dimension of disagreement on which conflict is increasing is over

time. Thus, under this definition of increasing ideological conflict the central result from

our baseline model continues to hold. Even though both players expect their opponent to

become more entrenched on the ideological dimension in the future, and thus less willing

to compromise, compounding costs on the common-values dimension generate incentives to

delay coming to an efficient agreement.

If the above condition fails, then the utility function over the X dimension can become

“flatter” over time despite the ideal points pulling further apart. In this case, our model

delivers a less surprising result. If players become less sensitive over time to changes on the

conflict dimension, and thus more willing to compromise tomorrow, this naturally creates
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incentives to delay agreeing to an efficient policy today, even absent compounding costs of

inefficiency. That is, even if preferences on the Y dimension do not change, the proposer

may want to undershoot the efficient policy to preserve leverage because the veto player

becomes close to indifferent over policies on the X dimension in the second period. As such,

any amount of inefficiency is more valuable and P ’s preferences are infected. Here, the key

condition for P ’s preferences to not be infected is that, for all x > x̂P
1 and y ≤ ŷ2:

u′
V 2(x)

u′
P1(x)

≥ v′2(y)

v′1(y)
. (16)

Under the increasing conflict condition,
u′
V 2(x)

u′
P1(x)

> 1 for all x > x̂P
1 , thus, v

′
2(y) ≤ v′1(y) is

sufficient for (16) to hold. If the increasing conflict condition fails, then it is possible that
u′
V 2(x)

u′
P1(x)

< 1 for x > x̂P
1 . Consequently, (16) can fail and infection of the proposer’s preferences

can occur even if, for example, v1(y) = v2(y). However, Condition (16) still maintains a

similar flavor as the original result, whereby infection of the proposer’s preferences is avoided

as long as the marginal cost of inefficiency is relatively smaller tomorrow than today. We

also note that the same logic and discussion applies if we relax concavity of u and only

require u to be quasi-concave over X: pulling apart the players’ ideal points can make them

less sensitive to changes over the relevant policy region (even if the shape of u does not

change in this case). Overall, given our substantive interest in situations where the actors

are becoming more antagonistic and policy problems worsen over time, we have focused our

analysis on the case where the uts are concave and condition (15) holds.

Finally, now that we allow the shape of the utility functions to change over time we

point out that Condition (4) does not consider the case where ŷ1 = ŷ2 but v′2(y) > v′1(y) for

y < ŷ1. This streamlines the presentation of our results, but it is not crucial for infection

of P ’s preferences.17 That is, a similar logic of compounding can lead to infection of P ’s

preferences if the ideal point on Y remains the same but the marginal cost of inaction

increases over time (except at ŷ1 = ŷ2), e.g., v2(y) = θv1(y) with θ > 1. In this case,

V ’s preferences are not infected, as it is not possible for y to overshoot ŷ1. However, P is

still incentivized to undershoot ŷ1 because the compounding makes V more willing to yield

concessions in period 2.18

17Furthermore, we note that Condition (4) allows the change in ŷ1 to be arbitrarily small.
18For example, consider the following numerical specification: ut(x − x̂i

t) = −(x − x̂i
t)

2, x̂P
1 = −x̂V

1 = 1,
x̂P
2 = −x̂V

2 = 7, v1(y) = − 1
4 (y− 1)2, and v2(y) = −(y− 1)2. If the efficient policy is implemented in the first

period, y = ŷ = 1, then the optimal x for P is the midpoint
x̂P
1 +x̂P

2

2 = 4. P ’s dynamic payoff in this case
is −(4 − 1)2 − (4 − 7)2 = −18. Instead, consider the policy x = 3.5 and y = −2.4. In the second period,
the veto player is willing to accept x(3.5,−2.4) ≈ 4.03. Then P ’s dynamic payoff from the inefficient policy
(3.5,−2.4) is −(3.5− 1)2 − 1

4 (−2.4− 1)2 − (4.03− 7)2 ≈ −17.93 > −18.
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4.2 Turnover

Up to this point, we have assumed that player P is always the proposer, emphasizing that

inefficiency and ideological infection in our setting do not stem from fear of the other player

taking power. We now turn our attention to the implications of turnover for our mechanism.

Specifically, we assume P is the proposer in period 1 and remains so with probability ρ ∈
(0, 1) in period 2, while V becomes the proposer with probability 1− ρ.

Now, the second-period outcome depends both on the first-period policy and the identity

of the player selected to be the proposer. If P remains the proposer, the equilibrium outcome

is as characterized in the baseline model. Letting xV (x
q
2, y

q
2) ≡ x(xq

2, y
q
2), the second-period

outcome is then x∗
P (x, y) = min{x̂P

2 , xV (x, y)}. Suppose instead that P becomes the veto

player in the second period. Then, the relevant threshold characterizing the set of acceptable

policies is xP (x
q
2, y

q
2), which is defined as the lower solution to:

uP2(x) = uP2(x
q
2) + v2(y

q
2).

Therefore, the second-period outcome if V becomes the proposer is x∗
V (x, y) = max{x̂V

2 , xP (x
q
2, y

q
2)}.

P ’s problem in the first period can now be written as:

max
x,y

uP1(x) + v1(y) + ρuP2

(
x∗
P (x, y)

)
+ (1− ρ)uP2

(
x∗
V (x, y)

)
(17)

s.t. uV 1(x) + v1(y) + ρuV 2

(
x∗
P (x, y)

)
+ (1− ρ)uV 2

(
x∗
V (x, y)

)
≥ Uq

We demonstrate that, similar to the baseline model, both players’ preferences are always

infected when ideological conflict intensifies rapidly.

Proposition 6. If uV 2(x̂
P
2 ) < uV 2(x̂

P
1 ) + v2(ŷ1) or uP2(x̂

V
2 ) < uP2(x̂

V
1 ) + v2(ŷ1), then both

players’ preferences are infected for almost all values of ρ ∈ (0, 1).

To understand these conditions, we focus first on P ’s preferences. Suppose ρ = 1, so that

P is certain to remain in power in the second period. The analysis of the baseline model

highlights that P ’s preferences are infected if and only if, by setting y1 = ŷ1 (and x1 = x̂P
1 ),

P does not maintain enough leverage to obtain its static optimum in the second period.

This condition ensures that any marginal movement away from ŷ1 impacts the outcome of

the second-period bargaining, generating the distortion. Symmetrically, when ρ = 0 and P

is certain to lose power in the second period, infection of his preferences emerges whenever

implementing y1 = ŷ1 (and x1 = x̂P
1 ) in period 1 implies V does not have enough leverage

to pass his optimum in the second period. When ρ is between 0 and 1, marginal movements

away from ŷ1 influence the second-period outcome as long as at least one of these conditions
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is satisfied. As a consequence, either one of these conditions is sufficient for P ’s preferences

to be infected. A similar logic applies to player V . Eliminating the least binding conditions,

we obtain that both players’ preferences are infected if uV 2(x̂
P
2 ) < uV 2(x̂

P
1 ) + v2(ŷ1) or

uP2(x̂
V
2 ) < uP2(x̂

V
1 ) + v2(ŷ1), as stated in Proposition 6.

Notice that the above discussion has an important implication: in our setting, turnover

can generate ideological infection. When uV 2(x̂
P
2 ) − uV 2(x̂

P
1 ) > uP2(x̂

V
2 ) − uP2(x̂

V
1 ), the

condition for V to be constrained as a second-period proposer after passing his first-period

optimum is less binding than the analogous condition for P . When P is sure to remain in

power in the second period, this is irrelevant. However, as described above, when ρ < 1

P worries about reducing V ’s leverage should he be selected as the second-period proposer,

and uP2(x̂
V
2 )− uP2(x̂

V
1 ) < v2(ŷ1) is enough to ensure P ’s preferences are infected.

However, our final result shows that turnover can mitigate inefficiency on the intensive

margin, by reducing the degree to which players’ preferences are infected.

Proposition 7. Suppose each player i’s dynamic ideal point is such that xV (x̂
i
d, ŷ

i
d) < x̂P

2

and xP (x̂
i
d, ŷ

i
d) > x̂V

2 . Then, ŷ
P
d is decreasing in ρ and ŷVd is increasing in ρ.

Consider the incentives of the proposer. If ρ is high then P is confident of remaining

the proposer tomorrow and therefore wants to undershoot in the first period. However, as

ρ decreases, P becomes increasing likely to lose power, and moves y towards ŷ1 to offset the

downside of keeping leverage in case V becomes the proposer. Eventually, the probability

of remaining proposer is sufficiently low that P begins to overshoot as insurance against

V becoming the proposer tomorrow. Thus, there is a unique value of ρ for which the

proposer’s incentives to under and overshoot exactly compensate each other, eliminating

infection. For all other values, infection persists. This implies that, for values of ρ below

this cutoff, increasing turnover reduces the degree to which P ’s preferences are distorted.

This finding suggests that during times of rapidly intensifying ideological conflict, electoral

uncertainty over who will hold power tomorrow can partially mitigate ideological infection

and its consequences, but cannot completely eliminate such distortions.

4.3 Stochastic Preferences

In our analysis thus far, we have assumed the players can perfectly anticipate how the optimal

common-values policy will evolve over time. This assumption is useful isolate the mechanism

behind our results, but it is an obvious simplification. In this section, we discuss the effects

of relaxing this assumption and consider a version of the model where the second-period

optimal common-values policy is ex-ante unknown. Suppose that ŷ2 = ŷ1 + ϵ, where ϵ is

drawn from a continuous distribution G with density g and full support over the real line.
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For ease of exposition, we focus on infection of P ’s preferences. Now, in the second

period the set of policies V is willing to accept depends on the realization of the shock on

the common-values dimension. Specifically, x(xq
2, y

q
2; ϵ) solves:

uV 2(x) = uV 2(x
q
2) + v(yq2 − ŷ1 − ϵ).

Let ϵ(xq
2, y

q
2) and ϵ(xq

2, y
q
2) be the lower and upper solutions, respectively, to x(xq

2, y
q
2; ϵ) =

x̂P
2 . Extreme shocks shift ŷ2 far from yq2, which gives P enough leverage to obtain its ideal

point in the second period. Therefore, P ’s dynamic ideal point (x̂P
d , ŷ

P
d ) solves

max
x,y

uP1(x) + v1(y) +

∫ ϵ(x,y)

ϵ(x,y)

uP2

(
x(x, y; ϵ)

)
g(ϵ)dϵ.

Notice, if the support of G was such that ϵ ∈
(
ϵ(x̂P

1 , ŷ1), ϵ(x̂
P
1 , ŷ1)

)
with probability 0 then

P ’s preferences are not infected. Similar to the case of uV 2(x̂
P
2 ) + v2(ŷ2) ≥ uV 2(x̂

P
1 ) + v2(ŷ1)

in Proposition 2, P anticipates having sufficient leverage tomorrow to obtain x̂P
2 , even if the

efficient policy is implemented today. When instead G has full support on R then (x̂P
d , ŷ

P
d )

must solve:

u′
P1(x) +

∫ ϵ(x,y)

ϵ(x,y)

u′
P2

(
x(x, y; ϵ)

)
u′
V 2

(
x(x, y; ϵ)

)u′
V 1(x)g(ϵ)dϵ = 0 (18)

v′1(y) +

∫ ϵ(x,y)

ϵ(x,y)

u′
P2

(
x(x, y; ϵ)

)
u′
V 2

(
x(x, y; ϵ)

)v′2(y; ϵ)g(ϵ)dϵ = 0. (19)

The first order conditions highlight that the results of this enriched model align with our

baseline findings. First, suppose that the shock ϵ has a zero mean, and both the distribution

G and the v function are symmetric. Substantively, this implies that players’ expect there

will be no change on the Y dimension. Condition 19 shows that, in this case, infection of

the proposer’s preferences is avoided. Under the assumed symmetry conditions, ϵ(x, ŷ1) and

ϵ(x, ŷ1) are centered around 0. In turn, this implies that
∫ ϵ(x,ŷ1)

ϵ(x,ŷ1)

u′
P2

(
x(x,ŷ1;ϵ)

)
u′
V 2

(
x(x,ŷ1;ϵ)

)v′2(ŷ1; ϵ)g(ϵ)dϵ =
0 under a symmetric v. In other words, even though change on the common-values dimension

may occur, the symmetry conditions imply that the possible dynamic downsides for the

proposer of a policy undershooting the static optimum exactly compensate the upsides. In

expectation, neither player benefits from an inefficient policy. As such, ŷ1 is the unique

solution to the proposer’s maximization problem, and ideological infection is avoided.

Conversely, a positive mean shock, and thus the mere expectation of a worsening of

the status quo on the common-values dimension, is enough to guarantee infection of the

proposer’s preferences. In this case, the full support of G implies that, with some probability,
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the proposer will dynamically benefit from undershooting on the common-values dimension.

This is enough to distort his preferences.

While the above discussion only considers uncertainty over the common-values dimen-

sion, similar intuitions apply to the conflict dimension. Suppose the players anticipate that

ideological polarization will (weakly) increase in the second period, but do not know by how

much. An intuitive condition is sufficient to generate ideological infection: that there is a

strictly positive probability that the realization of the second-period bliss points satisfies the

conditions identified in Proposition 2.

In this case, although the parties cannot perfectly predict the future location of their

respective optimal policies, it is possible they will become so polarized that inefficiency in

the first period could yield gains for the proposer in the second.19 This generates incentives

for the proposer to distort policy in the first period, resulting in y∗1 ̸= ŷ1. Thus, allowing

uncertainty over either, or both, dimensions should not alter the main insights of the model.

4.4 Long-run Outcomes

We now extend our analysis to study when bargaining over a dynamic policy problem and

a issue with increasing conflict leads to inefficiency over the long run. Bargaining proceeds

as before, but unfolds over a finite number of periods, t = 1, 2, ..., T , where throughout we

assume T is large.

Let u(x − x̂i
t) = −(x − x̂i

t)
2 and v(y − ŷt) = −(y − ŷt)

2. Additionally, we specify the

evolution of ideal points as follows: ŷt = γt and x̂P
t = −x̂V

t = tη, with γ > 0 and η > 0. Thus,

the common-values ideal point increases linearly in time, while the evolution of ideal points

on the conflict dimension may be concave or convex, and the evolution of these processes

are governed by γ and η.

We study subgame perfect equilibria and, given the finite horizon, analyze the model via

backwards induction. Notice that at period t any history leading to the same status quo

(xq
t , y

q
t ) yields the same continuation game. As such, we focus on strategy profiles where

policy proposals only depend on the time period (which also captures the players’ ideal

points) and the inherited status quo, and acceptance decisions only depend on these factors

plus the proposed policy. We write player i’s continuation payoff from strategy starting at

time t as wi
t(x

q
t , y

q
t ), suppressing dependence on the strategy profile. With this notation in

hand, a strategy profile constitutes an equilibrium if for all status quo policies (xq, yq) and

all t, the following conditions hold:

19The condition for infection from Proposition 2 indicates that if P implements his static optimum in the
first period, (x̂P

1 , ŷ1), then he will not have enough leverage to get his static optimum in the second.
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• for any proposal (x, y), V accepts if and only if

uV t(x) + vt(y) + wV
t+1

(
x, y
)
≥ uV t(x

q
t ) + vt(y

q
t ) + wV

t+1

(
xq
t , y

q
t

)
.

• P ’s proposal, x∗
t (x

q, yq), solves

max
(x,y)

uPt(x) + vt(y) + wP
t+1

(
x, y
)

s.t. uV t(x) + vt(y) + wV
t+1

(
x, y
)
≥ uV t(x

q
t ) + vt(y

q
t ) + wV

t+1

(
xq
t , y

q
t

)
.

Of course, in the last period of the game the players always agree on the efficient policy,

y∗T = ŷT , and the ideological policy x∗
T = min

{
x̂P
T , x(x

q
T , y

q
T )
}
, where x is defined as in the

two-period model.

In this setting, the case of γ = 0 corresponds to no movement in the ideal common-values

policy, i.e., condition (4) fails in each period. For the same logic as in the baseline model, the

absence of compounding costs of inefficiency implies there is no ideological infection. The

following propositions consider the case where γ > 0, i.e. the optimal common-values policy

changes over time. As we saw in the baseline model, compounding of the costs of inefficiency

are necessary but not sufficient for ideological infection. Specifically, from Proposition 2, P ’s

preferences are not infected when the change in preferences on X is sufficiently slow relative

to the change in ŷ, such that P can obtain its ideal point in both periods. Similarly, the

evolution of preferences on the conflict dimension plays a crucial role for whether inefficiency

can be sustained in the long-run.

Proposition 8. If η < 1
2
then there exists t̂ < T such that the equilibrium policy outcome is

x∗
t = x̂P

t and y∗t = ŷt in every period t ≥ t̂. Furthermore, for γ sufficiently large t̂ = 1.

When η < 1
2
, in which case the evolution of preferences on the X dimension is concave,

the ideological conflict is increasing but eventually this increase is very small. Thus, in the

long run, the change in conflict on X is slow relative to changes on the common-values

dimension, where ŷt is increasing linearly. Proposition 8 then confirms our insights from

the baseline model. The players eventually reach a period where P is able to pass its static

ideal policy (x̂P
t , ŷt), and from there P has enough leverage to implement his ideal point

on the conflict dimension in every subsequent period. Thus, the parties always reach the

efficient common-values policy before the end date T . Furthermore, when the evolution of

the common-values dimension is sufficiently rapid the parties reach efficiency immediately.

Next, we consider the case of rapidly growing polarization. Similar to the baseline,

infection in any non-final period may be inevitable under rapid polarization.
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Proposition 9. If η > 1
2
then y∗t ̸= ŷt in every period.

When η > 1
2
the evolution of conflict on the X dimension is sufficiently fast that by the

time the game reaches period T − 1 the proposer will want to adopt an inefficient policy,

regardless of the inherited status quo. Anticipation of the eventual need for leverage rolls

back to the previous periods, and leads to policy outcomes always being inefficient.

5 Conclusion

Addressing policy problems often requires the agreement of multiple parties. However, bar-

gaining parties regularly have trouble reaching an efficient solution, even on issues where

they all agree that the situation will grow increasingly worse if there is a lack of action.

Our model shows that agreements on these common-values policy problems are vulnerable

to being distorted by disagreements on other issues precisely because they worsen over time.

Furthermore, if parties anticipate being more entrenched on the conflict dimension in the

future, then ideological infection of preferences over the common-values issue is inevitable.

Our analysis provides insight into a number of contexts where parties have failed to

adapt policy to deteriorating circumstances. Climate change negotiations between China

and the United States have been hampered by disagreements over Taiwan. In the United

States, political parties now appear polarized on nearly every issue, including those with

little ideological content. Additionally, despite the severe costs, Republicans and Democrats

have not always managed to avoid a government shutdown due to strategic incentives to gain

an advantage on ideological issues. Our paper uncovers the conditions under which these

issues of joint interest become infected by issues of conflict.
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Bowen, T Renee, Ying Chen, and Hülya Eraslan, “Mandatory versus discretionary
spending: The status quo effect,” American Economic Review, 2014, 104 (10), 2941–2974.

Buisseret, Peter and Dan Bernhardt, “Dynamics of policymaking: Stepping back to
leap forward, stepping forward to keep back,” American Journal of Political Science, 2017,
61 (4), 820–835.

Callander, Steven and Gregory J Martin, “Dynamic policymaking with decay,” Amer-
ican Journal of Political Science, 2017, 61 (1), 50–67.
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A Proofs of Main Results

As discussed in Section 4.1, we can generalize the baseline model to allow the shapes of the

utility functions to change between periods. We now index u and v by the time period:

uit(x) = ut(x− x̂i
t) and vt(y) = vt(y− ŷt) and impose the following assumption throughout:

Assumption 2.

u′
V 2(x) ≤ u′

V 1(x) and u′
P1(x) ≤ u′

P2(x) for all x ∈ [x̂V
2 , x̂

P
2 ]. (20)

Lemma A.1. Any (x, y) such that x(x, y) > x̂P
2 with y ̸= ŷ1 or x > x̂P

1 does not solve (3).

Proof. For a contradiction, assume there exists (x, y) such that x(x, y) > x̂P
2 is optimal and

y ̸= ŷ1. Since x(x, y) is continuous in y there exists y′ closer to ŷ1 such that x(x, y′) > x̂P
2 .

Furthermore, because uV 1(x)+v1(y
′)+uV 2(x̂

P
2 ) > uV 1(x)+v1(y)+uV 2(x̂

P
2 ) the policy (x, y′)

must also satisfy V ’s acceptance constraint. Evaluating the objective function at (x, y′) and

(x, y) immediately yields uP1(x)+v1(y
′)+uP2(x̂

P
2 ) > uP1(x)+v1(y)+uP2(x̂

P
2 ), contradicting

that (x, y) solves problem (3). A similar argument shows that if x(x, y) > x̂P
2 and x > x̂P

1

then there exists some profitable deviation x′ ∈ (x̂P
1 , x), which improves the first-period

payoffs of P and V without changing second-period payoffs.

Lemma A.1 establishes an initial characterization of the optimal proposal when x(x, y) >

x̂P
2 . If instead (x, y) is such that x(x, y) ≤ x̂P

2 , then we can write the proposer’s problem (3)

as:

max
x,y

uP1(x) + v1(y) + uP2

(
x(x, y)

)
s.t. uV 1(x) + v1(y) + uV 2(x) + v2(y) ≥ Uq

uV 2(x) + v2(y) ≥ uV 2(x̂
P
2 )

System (21) yields the KKT conditions for this problem:20

20It is straightforward to show that if the constraint qualification fails at some point (x, y) then it must be
that x ∈ [x̂V

2 , x̂
V
α ) and y ∈ (ŷVα , ŷ2]. However, this cannot be optimal as a deviation to x = x̂V

d and y = ŷVd is
always accepted by V and improves P ’s dynamic payoff. Thus, the KKT conditions will hold at any solution.
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u′
P1(x) +

∂x

∂x
u′
P2

(
x(x, y)

)
+ λ1

[
u′
V 1(x) + u′

V 2(x)
]
+ λ2u

′
V 2(x) = 0

v′1(y) +
∂x

∂y
u′
P2

(
x(x, y)

)
+ λ1

[
v′1(y) + v′2(y)

]
+ λ2v

′
2(y) = 0

λ1

[
uV 1(x) + v1(y) + uV 2

(
x(x, y)

)
− Uq

]
= 0

λ2

[
uV 2(x) + v2(y)− uV 2(x̂

P
2 )
]
= 0

λ1, λ2 ≥ 0

(21a)

(21b)

(21c)

(21d)

(21e)

Lemma A.2. Any (x, y) such that x(x, y) = x̂P
2 never solves (3).

Proof. Suppose there exists (x, y) that solves (3) such that x(x, y) = x̂P
2 . Thus, (x, y) must

solve system (21). In particular, consider condition (21b). Letting x(x, y) = x̂P
2 , then

u′
P2

(
x(x, y)

)
= 0 and this condition becomes:

v′1(y) + λ1

[
v′1(y) + v′2(y)

]
+ λ2v

′
2(y) = 0. (22)

First, notice that if such an (x, y) is optimal then we must have y ≤ ŷ1. If y ∈ (ŷ1, ŷ2] then

P could deviate to y = ŷ1, which would maintain x∗
2(x, y) = x̂P

2 and improve the first-period

payoff of both players, contradicting that (x, y) solves problem (3).

Second, if y < ŷ1 then the LHS of (22) is strictly positive by ŷ1 ≤ ŷ2, contradicting that

(22) holds. Therefore, if (x, y) is such that x(x, y) = x̂P
2 and solves problem (3) then we

must have y = ŷ1.

To finish the proof we now show that y = ŷ1 also leads to a contradiction. If y = ŷ1 then

(22) reduces to:

(
λ1 + λ2

)
v′2(ŷ1) = 0. (23)

We consider two cases depending on v′2(ŷ1). First, if v
′
2(ŷ1) > 0 then for (22) to hold requires

λ1 = λ2 = 0, but λ2 = 0 contradicts that x(x, y) = x̂P
2 . Second, if v′2(ŷ1) = 0 then it must

be that ŷ1 = ŷ2. Thus, the policy will be stuck at the first-period proposal x in the second

period, which implies that x = x̂P
2 . In this case, for condition (21a) to hold requires:

u′
P1(x̂

P
2 ) + λ1

[
u′
V 1(x̂

P
2 ) + u′

V 2(x̂
P
2 )
]
+ λ2u

′
V 2(x̂

P
2 ) = 0. (24)

Because x̂P
2 ≥ x̂P

1 the LHS of (24) is strictly negative by assumption that P is always further

to the right than V , which contradicts that (x, y) solves (3) and completes the argument.
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Lemma 2. On the Y dimension ŷPd ≤ ŷ1 ≤ ŷVd . On the X dimension x̂V
d ≤ x̂V

1 and x̂P
1 ≤ x̂P

d .

Proof. First, we prove the result for the proposer’s dynamic ideal point. If P chooses (x, y)

such that x∗
2(x, y) = x(x, y) then the necessary condition (x̂P

d , ŷ
P
d ) solves is:

u′
P1(x) +

∂x

∂x
u′
P2

(
x(x, y)

)
= 0 (25)

v′1(y) +
∂x

∂y
u′
P2

(
x(x, y)

)
= 0. (26)

Recall that x(x, y) solves (2), the implicit function theorem then yields:

∂x

∂x
=

u′
V 2(x)

u′
V 2

(
x(x, y)

) , and
∂x

∂y
=

v′2(y)

u′
V 2

(
x(x, y)

) .
As such, (25) can be written as: u′

P1(x) +
u′
V 2(x)

u′
V 2(x)

u′
P2

(
x(x, y)

)
, note we will sometimes

suppress dependence of x on the first-period policy (x, y). Furthermore, in equilibrium we

must have x̂V
2 < x ≤ x(x, y) ≤ x̂P

2 , which implies
u′
V 2(x)

u′
V 2(x)

> 0 and u′
P2

(
x(x, y)

)
≥ 0. Therefore,

x > x̂P
1 is necessary for (25) to hold. Next consider equation (26). After substituting for ∂x

∂y
,

(26) becomes:

v′1(y) +
u′
P2

(
x(x, y)

)
u′
V 2

(
x(x, y)

)v′2(y) = 0.

Because x(x, y) ∈ (x̂V
2 , x̂

P
2 ] we have

u′
P2(x)

u′
V 2(x)

≤ 0. Thus, if y ∈ (ŷ1, ŷ2] then (26) is strictly

negative. Clearly y > ŷ2 is never optimal. Hence, a necessary condition for (26) to hold is

that y ≤ ŷ1.

Suppose instead that (x̂P
d , ŷ

P
d ) is such that x∗

2(x̂
P
d , ŷ

P
d ) = x̂P

2 . In this case, if x∗
2(x̂

P
d , ŷ

P
d ) =

x̂P
2 is optimal absent the veto player’s first-period acceptance constraint, then clearly we

must have (x̂P
d , ŷ

P
d ) = (x̂P

1 , ŷ1). Thus, it is always the case that x̂P
d ≥ x̂P

1 and ŷPd ≤ ŷ1.

Now consider the veto player. V ’s dynamic ideal point (x̂V
d , ŷ

V
d ) solves:

max
x,y

uV 1(x) + v1(y) + uV 2

(
x∗
2(x, y)

)
.

If x∗
2(x, y) = x(x, y) then (x̂V

d , ŷ
V
d ) must solve:

u′
V 1(x) + u′

V 2(x) = 0

v′1(y) + v′2(y) = 0.

Thus, x̂V
d ≤ x̂V

1 and ŷVd ≥ ŷ1, as required. If instead it is optimal for V to choose (x̂V
d , ŷ

V
d )

such that x∗
2(x, y) = x̂P

2 , then clearly it must be that x̂V
d = x̂V

1 and ŷVd = ŷ1, completing the
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argument.

Proposition 1. If v′1(y) ≥ v′2(y) for all y ≤ ŷ1, then there is no ideological infection,

ŷPd = ŷVd = ŷ1. Furthermore, the policy outcome is efficient, y∗1 = ŷ1.

Proof.

Part 1. To start, we prove part 1, that there is no ideological infection. For a contradiction,

assume v′1(y) ≥ v′2(y) for all y ≤ ŷ1, but ŷ
i
d ̸= ŷ1 for some i ∈ {V, P}.

First, consider player P and suppose ŷPd < ŷ1. Lemma A.1 implies that if yPd ̸= ŷ1 then

x∗(x, y) = x(x, y). Thus, from our analysis in Lemma 2, it is necessary that P ’s dynamic

ideal point (xP
d , y

P
d ) solves:

u′
P1(x) +

u′
V 2(x)

u′
V 2(x)

u′
P2(x(x, y)) = 0 (27)

v′1(y) +
v′2(y)

u′
V 2(x)

u′
P2(x(x, y)) = 0. (28)

Using that y ̸= ŷ1, we can combine conditions (27) and (28) and rearrange to obtain that

(x̂P
d , ŷ

P
d ) must satisfy:

v′2(y)

v′1(y)
=

u′
V 2(x)

u′
P1(x)

. (29)

From the proof of Lemma 2, if (x, y) is such that x∗
2(x, y) = x(x, y) then x̂P

d > x̂P
1 . Recall

that uP1(x) is a translation of uV 1(x) and ui1 is concave, thus, u′
V 1(x) < u′

P1(x) < 0 for

x > x̂P
1 . Furthermore, by Assumption 2, u′

V 2(x) ≤ u′
V 1(x). Hence, u′

V 2(x) < u′
P1(x) < 0.

However, this implies
u′
V 2(x)

u′
P1(x)

> 1 and by assumption
v′2(y)

v′1(y)
≤ 1. Therefore,

u′
V 2(x)

u′
P1(x)

>
v′2(y)

v′1(y)
and

(29) cannot hold, contradicting that ŷPd ̸= ŷ1.

Second, we show that L’s preferences are also not infected. Suppose not, so ŷVd > ŷ1. A

similar argument as for P in Lemma A.1 yields that if ŷVd ̸= ŷ1 then x(x̂V
d , ŷ

V
d ) ≤ x̂P

2 . Thus,

consider (x, y) such that x∗
2(x, y) = x(x, y). In this case, (x̂V

d , ŷ
V
d ) solves:

u′
V 1(x) + u′

V 2(x) = 0 (30)

v′1(y) + v′2(y) = 0. (31)

The assumption that
v′2(y)

v′1(y)
≤ 1 for all y ≤ ŷ1 implies that ŷ1 = ŷ2, otherwise the assumption

would fail at y = ŷ1 < ŷ2. Therefore, if y > ŷ1 = ŷ2 then v′1(y) < 0 and v′2(y) < 0, which

violates (31).
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Part 2. Now we show that the policy outcome must also be efficient. To derive a contra-

diction, suppose that v′1(y) ≥ v′2(y) for all y ≤ ŷ1 but y∗1 ̸= ŷ1. By Lemma A.1 if y∗1 ̸= ŷ1

then x(x∗
1, y

∗
1) ≤ x̂P

2 . Thus, the optimal policy proposal must solve system (21). To prove

the result we now consider different cases depending on which constraints are binding.

Case 1: To start, assume λ2 > 0, this implies that x(x, y) = x̂P
2 , which cannot be optimal

by Lemma A.2.

Case 2: Second, assume λ1 = 0 and λ2 = 0. By λ1 = 0 the proposer’s unconstrained optimal

policy is accepted by V . Thus, by Proposition 1 y∗1 = ŷPd = ŷ1, as required.

Case 3: Finally, consider the case where λ1 > 0 and λ2 = 0. Solving (21a) and (21b) for λ1

implies that (x, y) must solve:

v′1(y) +
u′
P2(x)

u′
V 2(x)

v′2(y)

v′1(y) + v′2(y)
=

u′
P1(x) +

u′
P2(x)

u′
V 2(x)

u′
V 2(x)

u′
V 1(x) + u′

V 2(x)
. (32)

Rearranging condition (32), we have that any optimal (x, y) must solve:

v′1(y)u
′
P1(x)− v′1(y)u

′
V 1(x) + v′2(y)u

′
P1(x)− v′1(y)u

′
V 2(x)

− u′
P2(x)

u′
V 2(x)

(
v′2(y)u

′
V 1(x)− v′1(y)u

′
V 2(x)

)
= 0. (33)

To obtain a contradiction, we show that if y ̸= ŷ1 then the LHS of (33) is strictly positive.

Suppose y < ŷ1 = ŷ2, recalling that if v′1(y) ≥ v′2(y) for all y ≤ ŷ1 then ŷ1 = ŷ2 (an analogous

argument proves the case y > ŷ1 = ŷ2). Thus, v
′
1(y) > 0 and v′2(y) > 0.

First, we show that the last term in (33) is always positive. To see this, note that
u′
P2(x)

u′
V 2(x)

< 0, by x(x, y) ∈ (x̂V
2 , x̂

P
2 ]. Thus, a sufficient condition for the last term on the LHS

of (33) to be positive is that:

v′2(y)u
′
V 1(x)− v′1(y)u

′
V 2(x) > 0. (34)

Clearly, in equilibrium, x ≥ x̂V
2 . Thus, if x < x̂V

1 then v′2(y)u
′
V 1(x) > 0 and (34) holds.

Instead, suppose that x ≥ x̂V
1 . By Assumption 2 u′

V 2(x) < u′
V 1(x) < 0. Additionally,

by assumption, v′1(y) ≥ v′2(y) > 0. As such, v′2(y)u
′
V 1(x) > v′1(y)u

′
V 2(x), and (34) holds.

Therefore, −u′
P2(x)

u′
V 2(x)

(
v′2(y)u

′
V 1(x)− v′1(y)u

′
V 2(x)

)
≥ 0, as claimed.

Second, consider the term: v′1(y)u
′
P1(x)− v′1(y)u

′
V 1(x). By y < ŷ1, this term is positive if

and only if u′
P1(x) ≥ u′

V 1(x), which holds by concavity of u1(x− x̂i) and x̂V
1 < x̂P

1 .

Finally, to complete the argument that the LHS of (33) is strictly positive, we show that
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v′2(y)u
′
P1(x)− v′1(y)u

′
V 2(x) > 0. This holds if and only if:

v′2(y)u
′
P1(x) > v′1(y)u

′
V 2(x). (35)

By our previous argument showing that (34) is positive, we have v′2(y)u
′
V 1(x) > v′1(y)u

′
V 2(x).

Thus, a sufficient condition for (35) to hold is that v′2(y)u
′
P1(x) ≥ v′2(y)u

′
V 1(x), which again

follows from concavity of u1 and x̂V
1 < x̂P

1 . Therefore, the LHS of (33) is strictly positive,

contradicting that y < ŷ1 is optimal.

Proposition 2.

1. V ’s preferences are infected if and only if uV 2(x̂
P
2 ) < uV ; and

2. P ’s preferences are infected if and only if uV 2(x̂
P
2 ) < uP .

Furthermore, uP < uV .

Proof.

Part 1. To start, we prove part 1 of the proposition. Recall, that uV ≡ uV 1(x̂
V
α ) + v1(ŷ

V
α ) +

uV 2(x̂
V
α ) + v2(ŷ

V
α ), where (x̂V

α , ŷ
V
α ) solves:

u′
V 1(x) + u′

V 2(x) = 0 (36)

v′1(y) + v′2(y) = 0.

We begin by showing that if uV 2(x̂
P
2 ) < uV then V ’s preferences are infected. In this case,

uV 2(x̂
P
2 ) < uV < uV 2(x̂

V
α ) + v2(ŷ

V
α ) which implies x(x̂V

α , ŷ
V
α ) < x̂P

2 . Therefore, V ’s dynamic

payoff from (x̂V
α , ŷ

V
α ) is uV . By construction (x̂V

α , ŷ
V
α ) maximizes uV 1(x)+v1(y)+uV 2(x)+v2(y)

and hence maximizes V ’s dynamic payoff among all policies (x, y) such x∗
2(x, y) < x(x, y).

Finally, the best possible dynamic payoff to V from any policy (x, y) such that x∗
2(x, y) = x̂P

2

is uV 2(x̂
P
2 ) which is strictly less than the dynamic payoff from (x̂V

α , ŷ
V
α ) by assumption that

uV 2(x̂
P
2 ) < uV . From inspection of (36), ŷVα > ŷ1, and V ’s preferences are infected.

Next, we prove that if uV 2(x̂
P
2 ) ≥ uV then V ’s preferences are not infected. Because

(x̂V
α , ŷ

V
α ) solves maxx,y uV 1(x)+ v1(y)+uV 2(x)+ v2(y) we have that uV ≥ uV 1(x̂

V
1 )+ v1(ŷ1)+

uV 2(x̂
V
1 ) + v2(ŷ1) = uV 2(x̂

V
1 ) + v2(ŷ1). Therefore, the assumption uV 2(x̂

P
2 ) ≥ uV also yields

that uV 2(x̂
P
2 ) ≥ uV 2(x̂

V
1 ) + v2(ŷ1). Thus, the dynamic payoff to V from (x̂V

1 , ŷ1) is uV 2(x̂
P
2 ),

which is the greatest possible payoff from any first-period policy such that x∗
2(x, y) = x̂P

2 .
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Instead the best policy for V such that x(x, y) ≤ x̂P
2 solves:

max
x,y

uV 1(x) + v1(y) + uV 2(x) + v2(y)

s.t. uV 2(x) + v2(y) ≥ uV 2(x̂
P
2 ).

Recall that (xV
α , y

V
α ) solves this problem when the constraint does not bind, however,

uV 2(x̂
P
2 ) ≥ uV and hence the constraint must be binding at the solution. Therefore the

best policy (x, y) for V such that x(x, y) ≤ x̂P
2 must set x(x, y) = x̂P

2 , and clearly uV 1(x) +

v1(y) + uV 2(x̂
P
2 ) < uV 1(x̂

V
1 ) + v1(ŷ1) + uV 2(x̂

P
2 ). Consequently, (x̂V

d , ŷ
V
d ) = (x̂V

1 , ŷ1) and V ’s

preferences are not infected.

Part 2. Now we prove part 2 of the proposition. Recall that uP = uV 2(x̂
P
1 ) + v2(ŷ1).

We first show that if uV 2(x̂
P
2 ) ≥ uP then P ’s preferences are not infected. By definition

of uP , if P chooses (x̂P
1 , ŷ1) in the first period it can implement (x̂P

2 , ŷ2) in the second. As

this is the unique sequence of policies that yields P its first-best payoff, P ’s preferences are

not infected.

Next, we show that if uV 2(x̂
P
2 ) < uP then P ’s preferences are infected. To show a

contradiction, assume that ŷPd = ŷ1. We break the argument into two parts. First, let

x(x, ŷPd ) = x̂P
2 , then from system (21) for (x, y) to satisfy the KKT conditions it must be

that x < x̂P
1 . However, this implies uV 2(x) + v2(ŷ1) ≤ uV 2(x̂

P
2 ) and uV 2(x) + v2(ŷ1) >

uV 2(x̂
P
1 ) + v2(ŷ1) = uP , which contradicts that uV 2(x̂

P
2 ) < uP .

Second, let x(x̂P
d , ŷ

P
d ) < x̂P

2 . By System (21) x̂P
d must solve:

u′
P2(x

(
x, ŷ1)

)
u′
V 2(x

(
x, ŷ1)

)v′2(ŷ1) = 0. (37)

However, x(x, ŷ1) ∈ (x̂V
2 , x̂

P
2 ), thus

u′
P2(x(x,ŷ1))

u′
V 2(x(x,ŷ1))

< 0. Additionally, by Assumption 1 v′2(ŷ1) > 0.

Therefore, the LHS of (37) is strictly less than 0, which contradicts that ŷP2 = ŷ1.

Part 3. To conclude the proof we now demonstrate that uP < uV . We again note that

(x̂V
α , ŷ

V
α ) is the unique maximizer of uV 1(x)+v1(y)+uV 2(x)+v2(y) and thus uP = uV 1(x̂1)+

v1(ŷ1) + uV 2(x̂
P
1 ) + v2(ŷ1) < uV 1(x̂1) + v1(ŷ1) + uV 2(x̂

V
1 ) + v2(ŷ1) < uV 1(x̂

V
α ) + v1(ŷ

V
α ) +

uV 2(x̂
V
α ) + v2(ŷ

V
α ) = uV .

Proposition 3.

1. Assume V ’s preferences are infected but P ’s preferences are not. If Uq ≤ uV 1(x̂
P
1 ) +

uV 2(x̂
P
2 ) then the equilibrium policy is efficient. Otherwise, the equilibrium policy is
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inefficient for almost all (Uq, x̂
V
1 ).

2. If both players’ preferences are infected then the equilibrium policy is inefficient for

almost all (Uq, x̂
V
1 ).

Proof. We first prove the second part of the result. Assume that the preferences of both

players are infected, thus, uP > uV 2(x̂
P
2 ) by Proposition 2.

By Lemmas A.1 and A.2 if the equilibrium policy is such that x∗
2(x

∗
1, y

∗
1) = x̂P

2 then

x∗
1 < x̂P

1 and y∗1 = ŷ1. However, by x∗
1 < x̂P

1 we have uV 2(x
∗
1)+v2(ŷ1) > uV 2(x̂1)+v2(ŷ1) = uP .

Thus, the assumption uP > uV 2(x̂
P
2 ) implies uV 2(x

∗
1) + v2(ŷ1) > uV 2(x̂

P
2 ), which contradicts

that x(x∗
1, ŷ1) ≥ x̂P

2 . Therefore, the equilibrium policy (x∗
1, y

∗
1) must be such that x(x∗

1, y
∗
1) <

x̂P
2 and thus solve system (21). From (21) if y = ŷ1 then x must solve:

uV 1(x) + uV 2

(
x(x, ŷ1)

)
= Uq (38)

The LHS of (38) is strictly decreasing in x for x > x̂V
1 , thus, there must be a unique x′ > x̂V

1

that solves this equality.

Solving for λ1 from (21a) and (21b) and rearranging we have that the equilibrium x must

also solve:

u′
P2(x(x, ŷ1))

u′
V 2(x(x, ŷ1))

− u′
P1(x)

u′
V 1(x)

= 0. (39)

Using this condition, define f : R2 → R as f(x, x̂V
1 ) =

u′
P2(x(x,ŷ1))

u′
V 2(x(x,ŷ1))

− u′
P1(x)

u′
V 1(x)

. Then

Df(x, x̂V
1 ) =(

∂x

∂x

u′′
P2(x)u

′
V 2(x)− u′

P2(x)u
′′
V 2(x)

u′
V 2(x)

2
− u′

V 1(x)u
′′
P1(x)− u′

P1(x)u
′′
V 1(x)

u′
V 1(x)

2
,−u′

P1(x)u
′′
V 1(x)

[u′
V 1(x)]

2

)
,

Notice that if x = x̂P
1 then (39) cannot hold. Moreover, −u′

P1(x)u
′′
V 1(x)

[u′
V 1(x)]

2 = 0 if and only if x =

x̂P
1 . Therefore, if (x, x̂V

1 ) is such that f(x, x̂V
1 ) = 0 then Df(x, x̂V

1 ) has rank 1 = min{1, 2}.
Thus, 0 is a regular value of f and by the Transversality Theorem (De la Fuente, 2000,

Theorem 2.5) the set of x that solve (39) is measure 0 for almost all x̂V 1. Fix such a x̂V 1.

The unique solution to (38) is strictly increasing in Uq, while solutions to (39) do not change

in Uq.
21 Thus for almost all (Uq, x̂V 1) the solution to (38) does not coincide with any solutions

to (39).

Next, we prove the first part of the proposition. Suppose only V ’s preferences are infected,

21Note we can change Uq without changin anything in (39) by changing the initial status quo policy.
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thus, uV > uV 2(x̂
P
2 ) > uP by Proposition 2. For Uq ≤ uV 1(x̂

P
1 ) + uV 2(x̂

P
2 ) clearly (x, y) =

(x̂P
1 , ŷ1) is optimal, as P passes its ideal point in each period. Next, assume Uq > uV 1(x̂

P
1 ) +

uV 2(x̂
P
2 ). Thus, V rejects (x̂P

1 , ŷ1), which implies P chooses (x, y) such that x∗
2(x, y) = x(x, y)

and λ1 > 0. For a contradiction suppose that y1 = ŷ1. By Uq > uV 1(x̂
P
1 ) + uV 2(x̂

P
2 ) the veto

player must also reject any policy (x1, ŷ1) where x1 > x̂P
1 . Thus, x1 < x̂P

1 . Solving for λ1

and rearranging x must also solve

u′
P2(x(x, ŷ1))

u′
V 2(x(x, ŷ1))

− u′
P1(x)

u′
V 1(x)

= 0, (40)

and the same argument as above yields that the equilibrium policy can be efficient for only

a measure zero set of parameters (Uq, x̂
V
1 ).

Proposition 4. Assume uV 2(x̂
P
2 ) < uP . There exists an open interval (U q, U q), such that,

if Uq ∈ (U q, U q) then x∗
1 < x̂P

1 and y∗1 < ŷ1.

Proof. Since uV 2(x̂
P
2 ) < uP the optimal proposal must solve system (21), and the implicit

function theorem delivers that we can view solutions (x∗
1, y

∗
1) as continuous functions of Uq.

For Uq sufficiently large we have x∗
1(Uq) < x̂P

1 and y∗1(Uq) > ŷ1, and for Uq sufficiently small

we have x∗
1(Uq) > x̂P

1 and y∗1(Uq) < ŷ1, because the equilibrium policy must be close to V ’s

and P ’s dynamic ideal points, respectively. Thus, there must exist some U ′
q such that y = ŷ1.

Specifically, let U ′
q be the first such value of Uq where y∗1 = ŷ1.

First, we show that U ′
q > uV 1(x̂

P
1 ) + v(ŷ1) + uV 2

(
x∗
2(x̂

P
1 , ŷ1)

)
. Suppose not, so that

U ′
q ≤ uV 1(x̂

P
1 ) + v(ŷ1) + uV 2

(
x∗
2(x̂

P
1 , ŷ1)

)
. The veto constraint must bind, otherwise P could

choose its unconstrained optimal which sets y < ŷ1. Thus, if y = ŷ1 then, from our earlier

analysis, the equilibrium proposal must satisfy:

u′
P2(x(x, ŷ1))

u′
V 2(x(x, ŷ1))

=
u′
P1(x)

u′
V 1(x)

. (41)

Furthermore, because U ′
q ≤ uV 1(x̂

P
1 )+v(ŷ1)+uV 2

(
x∗
2(x̂

P
1 , ŷ1)

)
we must have x > x̂P

1 , otherwise

if x < x̂P
1 then P could profitably deviate to x = x̂P

1 , which the veto player would accept.

Thus, if y = ŷ1 then x > x̂P
1 . If x > x̂P

1 then
u′
P1(x)

u′
V 1(x)

> 0. However,
u′
P2(x(x,ŷ1))

u′
V 2(x(x,ŷ1))

< 0,

contradicting that (41) holds.

Therefore, there is some U ′
q > uV 1(x̂

P
1 ) + v(ŷ1) + uV 2(x

∗
2(x̂

P
1 , ŷ1)) such that y < ŷ1 for

Uq < U ′
q. Furthermore, for any Uq ∈

(
uV 1(x̂

P
1 ) + v(ŷ1) + uV 2

(
x∗
2(x̂

P
1 , ŷ1)

)
, U ′

q

)
if y < ŷ1 and

x > x̂P
1 then it is profitable for V to reject because U ′

q > uV 1(x̂
P
1 ) + v(ŷ1) + uV 2

(
x∗
2(x̂

P
1 , ŷ1)

)
.

Thus, x∗
1 < x̂P

1 and y∗1 < ŷ1 for
(
uV 1(x̂

P
1 ) + v(ŷ1) + uV 2

(
x∗
2(x̂

P
1 , ŷ1)

)
, U ′

q

)
, as claimed.
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B Proofs for Turnover Extension

Proposition 6. If uV 2(x̂
P
2 ) < uV 2(x̂

P
1 ) + v2(ŷ1) or uP2(x̂

V
2 ) < uP2(x̂

V
1 ) + v2(ŷ1), then both

players’ preferences are infected for almost all values of ρ ∈ (0, 1).

Proof. We consider the case of player P . A similar argument extends the result to player V .

The argument proceeds as follows. First, we show that if (x̂P
d , ŷ

P
d ) is such that x∗

P (x̂
P
d , ŷ

P
d ) =

xV (x̂
P
d , ŷ

P
d ) or x

∗
V (x̂

P
d , ŷ

P
d ) = x(x̂P

d , ŷ
P
d ) then it must be that ŷPd ̸= ŷ1 for almost all values of

ρ. Second, we show that if x∗
P (x̂

P
d , ŷ

P
d ) = x̂P

2 and x∗
V (x̂

P
d , ŷ

P
d ) = x̂V

2 then the only possible

solution for player P ’s preferences to not be infected requires x∗
V (x̂

P
d , ŷ

P
d ) = (x̂P

1 , ŷ1), however,

this solution is not feasible by uV 2(x̂
P
2 ) < uV 2(x̂

P
1 ) + v2(ŷ1) or uP2(x̂

V
2 ) < uP2(x̂

V
1 ) + v2(ŷ1).

Step 1. We argue that if x∗
P (x̂

P
d , ŷ

P
d ) = xV (x̂

P
d , ŷ

P
d ) or x

∗
V (x̂

P
d , ŷ

P
d ) = x(x̂P

d , ŷ
P
d ) then ŷPd ̸= ŷ1

for almost all values of ρ. We break the argument into three parts, depending on if (x, y) is

such that one of the players can pass x̂i
2 in the second period.

Part 1. Consider (x, y) such that uV 2(x̂
P
2 ) ≤ uV 2(x) + v2(y) and uP2(x̂

V
2 ) ≤ uP2(x) + v2(y).

Then if the proposer’s dynamic ideal point satisfies these inequalities it must solve:

max
(x,y)

uP1(x) + v1(y) + ρuP2

(
xV (x, y)

)
+ (1− ρ)

(
uP2(x) + v2(y)

)
.

Letting a = −x and b = −y we can rewrite P ’s problem as:

max
(a,b)

uP1(−a) + v1(−b) + ρuP2

(
xV 2(a, b)

)
+ (1− ρ)

(
uP2(−a) + v2(−b)

)
.

Taking cross-partials of the objective function yields:

∂2

∂a∂b
= ρ
(∂2xV

∂a∂b
u′
P2

(
xV 2(−a,−b)

)
+

∂xV

∂a
· ∂xV

∂b
u′′
P2

(
xV (−a,−b)

))
∂2

∂a∂ρ
=

∂xV

∂a
u′
P2

(
xP (−a,−b)

)
+ u′

P2(−a)

∂2

∂b∂ρ
=

∂xV

∂b
u′
P2

(
xV (−a,−b)

)
+ v′2(−b)

We have ∂2xV 2

∂a∂b
> 0, ∂xV 2

∂a
< 0, and ∂xV 2

∂b
> 0, which yields, ∂2

∂a∂b
> 0 and ∂2

∂b∂ρ
> 0. Finally,

u′
P2(x) < u′

P2(x) = u′
P2(−a) and ∂xV 2

∂a
∈ (−1, 0), thus ∂2

∂a∂ρ
> 0. Then the usual results on

monotone comparative statics (Milgrom and Shannon, 1994) deliver that y∗d is monotonic in

ρ, and thus y∗d = ŷ1 for at most one value of ρ.
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Part 2. Consider (x, y) such that uV 2(x̂
P
2 ) ≥ uV 2(x) + v2(y) and uP2(x̂

V
2 ) ≤ uP2(x) + v2(y).

Then if the proposer’s dynamic ideal point satisfies these inequalities it must solve:

max
(x,y)

uP1(x) + v1(y) + ρuP2

(
x̂P
2

)
+ (1− ρ)

(
uP2(x) + v2(y)

)
.

Thus, such a (x̂P
d , ŷ

P
d ) must solve:

u′
P1(x) + (1− ρ)u′

P2(x) = 0

v′1(y) + (1− ρ)v′2(y) = 0,

which clearly cannot be satisfied if y = ŷ1 when v′2(ŷ1) > v′1(ŷ1) = 0 and ρ ∈ (0, 1).

Part 3. Consider (x, y) such that uV 2(x̂
P
2 ) ≤ uV 2(x) + v2(y) and uP2(x̂

V
2 ) ≥ uP2(x) + v2(y).

Then if the proposer’s dynamic ideal point satisfies these inequalities it must solve:

max
(x,y)

uP1(x) + v1(y) + ρuP2

(
xV (x, y)

)
+ (1− ρ)uP2(x̂

V
2 ).

Thus, such a (x̂P
d , ŷ

P
d ) needs to solve:

u′
P1(x) + ρ

u′
V 2(x)

u′
V 2

(
xV (x, y)

)u′
P2

(
xV (x, y)

)
= 0

v′1(y) + ρ
v′2(y)

u′
V 2

(
xV (x, y)

)u′
P2

(
xV (x, y)

)
= 0.

Because
u′
P2

(
xV (x,y)

)
u′
V 2

(
xV (x,y)

) < 0 and ρ ̸= 0, again it is clear that the second equality cannot be

satisfied when y = ŷ1 if v′2(ŷ1) > v′1(ŷ1) = 0.

Step 2. By the proof of step 1, if P ’s preferences are not infected then (x̂P
d , ŷ

P
d ) must be

such that x∗
P (x̂

P
d , ŷ

P
d ) = x̂P

2 and x∗
V (x̂

P
d , ŷ

P
d ) = x̂V

2 . Thus, if P is not infected then (x̂P
d , ŷ

P
d )

solves:

max
x,y

uP1(x) + v1(y) + ρuP2(x̂
P
2 ) + (1− ρ)uP2(x̂

V
2 ) (42)

s.t. uV 2(x̂
P
2 ) ≥ uV 2(x) + v2(y) (43)

uP2(x̂
V
2 ) ≥ uP2(x) + v2(y) (44)

P ’s dynamic ideal point (x̂P
d , x̂

V
2 ) needs to solve the KKT conditions of this problem,
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which are given by:

u′
P1(x)− λ1u

′
V 2(x)− λ2u

′
P2(x) = 0 (45)

v′1(y)− λ1v
′
2(y)− λ2v

′
2(y) = 0 (46)

λ1

[
uV 2(x̂

P
2 )− uV 2(x)− v2(y)

]
= 0 (47)

λ2

[
uP2(x̂

V
2 )− uP2(x)− v2(y)

]
= 0. (48)

First, suppose λ1 or λ2 ̸= 0 and y = ŷ1. Then equation (46) reduces to −(λ1+λ2)v
′
2(ŷ1) < 0.

Thus, if P ’s preference are not infected it must be that neither constraint is binding.

Second, let λ1 = λ2 = 0. Then, (x̂P
d , x̂

V
2 ) must solve u′

P1(x) = 0 and v′1(y) = 0 and thus

(x̂P
d , x̂

V
2 ) = (x̂P

1 , ŷ1). However, by assumption, either: (i) uV 2(x̂
P
2 ) < uV 2(x̂

P
1 ) + v2(ŷ1); or (ii)

uP2(x̂
V
2 ) < uP2(x̂

V
1 )+v2(ŷ1). If uV 2(x̂

P
2 ) < uV 2(x̂

P
1 )+v2(ŷ1) holds this immediately yields that

(x̂P
1 , ŷ1) is not a feasible solution, specifically, if violates (43). If instead uP2(x̂

V
2 ) < uP2(x̂

V
1 )+

v2(ŷ1) holds then note that uP2(x̂
V
1 ) < uP2(x̂

P
1 ), which implies uP2(x̂

V
2 ) < uP2(x̂

V
1 )+v2(ŷ1) <

uP2(x̂
P
1 ) + v2(ŷ1). Hence, (x̂1, ŷ1) is not feasible as it violates constraint (44). Analogous

arguments yield that if uV 2(x̂
P
2 ) < uV 2(x̂

P
1 ) + v2(ŷ1) or uP2(x̂

V
2 ) < uP2(x̂

V
1 ) + v2(ŷ1) then V ’s

preferences must be infected as well.

Proposition 7. Suppose each player i’s dynamic ideal point is such that xV (x̂
i
d, ŷ

i
d) < x̂P

2

and xP (x̂
i
d, ŷ

i
d) > x̂V

2 . Then, ŷ
P
d is decreasing in ρ and ŷVd is increasing in ρ.

Proof. The result follows from the proof of Step 1 Part 1 of Proposition 6.

C Proofs for Long-run Outcomes Extension

Proposition 8. If η < 1
2
then there exists t̂ < T such that the equilibrium policy outcome is

x∗
t = x̂P

t and y∗t = ŷt in every period t ≥ t̂. Furthermore, for γ sufficiently large t̂ = 1.

Proof. First, we show that if t is sufficiently large then in equilibrium R proposes x∗
t = x̂P

t

and y∗t = ŷt whenever the status quo is such that uVt(x̂
P
t ) + vt(ŷt) ≥ uVt(x

q
t ) + vt(y

q
t ) and V

accepts the proposal.

To start, we establish that V ’s static payoff in period t from getting P ’s ideal point

(x̂P
t , ŷt) is greater than its payoff from getting P ’s ideal point from the previous period t− 1

(x̂P
t−1, ŷt−1) whenever t is sufficiently large. More precisely, we claim that for t sufficiently

large:

−
(
tη + tη

)2
> −

(
(t− 1)η + tη

)2 − (γ(t− 1)− γt
)2
. (49)
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To see that (49) holds for t sufficiently large, note that when η < 1
2
we have limt→∞−

(
tη +

tη
)2

+
(
(t − 1)η + tη

)2
= 0, whereas, −

(
γ(t − 1) − γt

)2
= −γ2 < 0 for all t. Thus, under

the proposed strategies, for t sufficiently large if V accepts P ’s static ideal point in period t

then it is willing to accept P ’s static ideal point in period t+ 1.

Clearly, P has no incentive to deviate given the proposed strategies. Next, consider V .

V is willing to accept the proposal if rejecting today leads to P making the same form of

proposal tomorrow, since given the strategies V accepts which thus yields the same dynamic

utility to V and by construction it is statically optimal to accept. Thus, we need to show that

if t is sufficiently large and uVt(x̂
P
t )+vt(ŷt) ≥ uVt(x

q
t )+vt(y

q
t ) then uVt+1(x̂

P
t+1)+vt+1(ŷt+1) ≥

uVt+1(x
q
t ) + vt+1(y

q
t ).

Writing the condition as uVt(x̂
P
t ) + vt(ŷt) − uVt(x

q
t ) − vt(y

q
t ) ≥ 0 we have that the same

condition will hold in the next period if the LHS of the condition is increasing in t. Differ-

entiating yields: 2ηtn−1(xq + tn) − 2γ(yq − γt) − 8ηt2n−1. Rearranging this term is positive

if and only if

yq <
1

γ
ηtη−1

[
xq − 3tη

]
+ γt (50)

As t → ∞ the RHS of (50) goes to infinity when η < 1
2
and γ > 0. Thus, as yq ≤ γT for all

t there exists a t′ such that for all t ≥ t′ the statement holds.

This implies that P ’s unconstrained optimal policy in any period t ≥ t′ is (x̂P
t , ŷ

t). Thus,

if P does not get its unconstrained optimal in a period then P must be choosing (x, y) to

make V indifferent between accepting and rejecting. Therefore, if there is an equilibrium

such that for all t party P does not propose (x̂P
t , ŷt) then V ’s dynamic payoff is given

by:
∑∞

t=0 uVt(x
q
1) + vt(y

q
1). However, by η < 1/2 there is some period t′′ such that starting in

t′′ the dynamic payoff to V from getting (x̂P
t , ŷt) every period is greater than this dynamic

payoff from the initial status quo, which contradicts that this is an equilibrium.

Finally, note that for γ sufficiently large (50) holds for t = 1.

Proposition 9. If η > 1
2
then y∗t ̸= ŷt in every period.

Proof. We break the argument into several steps.

Step 1. In Step 1 we argue that if T is sufficiently large then at T − 1 the policy outcome

must be inefficient. If η > 1
2
then limT→∞−(T η + T η)2 +

(
(T − 1)η + T η

)2
= −∞, while

−
(
γ(T−1)−γT

)2
= −γ2 for all T . Therefore, uV T (x̂

P
T ) < uV T (x̂

P
T−1)+vT (ŷT−1) and y∗T ̸= ŷT

by Propositions 2 and 3.

Step 2. Now, we characterize the continuation payoffs beginning in period T − 1. Note that

P ’s optimal proposal will be constrained in period T . Thus, if P is constrained in T − 1,
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uV T−1(x̂
P
d ) + vT−1(ŷ

P
d ) + uV T (x̂

P
d ) + vT (ŷ

P
d ) ≤ uV T−1(x̂

q) + vT−1(ŷ
q) + uV T (x̂

q) + vT (ŷ
q) then

∂wV
T−1

∂yq
= v′T−1(y

q) + v′T (y
q) and

∂wV
T−1

∂xq = u′
V T−1(x

q) + u′
V T (x

q). On the other hand, if P

is unconstrained then both of these derivatives are 0. Furthermore, the envelope theorem

delivers that wP
T−1(x

q, yq) is differentiable almost everywhere in xq and yq, with

∂wP
T−1

∂yq
=

−λ∗
T−1

∂wV
T−1

∂yq
if P is constrained,

0 otherwise.

∂wP
T−1

∂xq
=

−λ∗
T−1

∂wV
T−1

∂xq if P is constrained,

0 otherwise.

Step 3. We now show that if the period t equilibrium policy is inefficient and continuation

payoffs have the analogous properties to those characterized for the T − 1 case in Step 2,

then the equilibrium policy in period t − 1 is inefficient and continuation payoffs have the

same form as in T − 1. The induction argument together with Steps 1 and 2 as the base

case then delivers the proposition.

Suppose y∗t ̸= ŷt and the derivatives for each player’s continuation payoffs wV
t (x

q
t , y

q
t ) and

wP
t (x

q
t , y

q
t ) have the same form as at T − 1. In period t− 1 P ’s optimal proposal solves:

max
(x,y)

uPt−1(x) + vt−1(y) + wP
t (x, y)

s.t. uV t−1(x) + vt−1(y) + wV
t (x, y) ≥ uV t−1(x

q
t−1) + vt−1(y

q
t−1) + wV

t (x
q
t−1, y

q
t−1).

We break the argument into two parts, depending on whether the veto player’s constraint

is binding at time t− 1. First, if P chooses a policy where the constraint does not bind then

(x∗
t−1, y

∗
t−1) solves:

u′
Pt−1(x) +

∂wP
t

∂x
= 0 (51)

v′t−1(y) +
∂wP

t

∂y
= 0. (52)

Thus, for ŷt−1 to be optimal requires that
∂wP

t

∂y
|y=ŷt−1 = 0 which implies that P is also

unconstrained at time t. If P is unconstrained at time t then
∂wP

t

∂x
= 0, and for (51) to also

hold requires x∗
t−1 = x̂P

t−1. However, this contradicts that P is unconstrained at period t, as

P ’s unconstrained optimal policy at time t sets x∗
t > x̂P

t > x̂P and y∗t > ŷt > ŷt−1. Thus, at

time t accepting such a (x∗
t , y

∗
t ) is strictly worse for V than rejecting to keep (x̂P

t , ŷt−1).

Second, suppose that P chooses a policy when the veto constraint is binding. Then
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(x∗
t−1, y

∗
t−1, λ

∗
t−1) solves:

u′
Pt−1(x) +

∂wP
t

∂x
+ λ
[
u′
V t−1(x) +

∂wV
t

∂x

]
= 0 (53)

v′t−1(y) +
∂wP

t

∂y
+ λ
[
v′t−1(y) +

∂wV
t

∂y

]
= 0 (54)

λ
[
uV t−1(x) + vt−1(y) + wV

t (x, y)− uV t−1(x
q
t−1)− vt−1(y

q
t−1)− wV

t (x
q
t−1, y

q
t−1)

]
= 0 (55)

Since the constraint is binding we have λ > 0. Solving for λ and rearranging, for (53)-(55)

to hold at y = ŷt−1 requires that x∗
t−1 satisfies:

∂wV
t

∂y

∣∣∣
y=ŷt−1

(
u′
Pt−1(x) +

∂wP
t

∂x

)
− ∂wP

t

∂y

∣∣∣
y=ŷt−1

(
u′
V t−1(x) +

∂wV
t

∂x

)
= 0 (56)

uV t−1(x) + wV
t (x, ŷt−1) = uV t−1(x

q
t−1) + vt−1(y

q
t−1) + wV

t (x
q
t−1, y

q
t−1). (57)

The LHS of (57) is decreasing in x, thus there is at most one x which solves it. Additionally,

because u is quadratic, the LHS of (56) is linear in x. However, the first equality does not

depend on the status quo, and thus any perturbation of the initial status quo only changes

the solution to (57) and there cannot be an x∗
t−1 that satisfies (56) and (57) for almost all

(xq
1, y

q
1).

Finally, note that if the constraint is not binding, uV t−1(x
∗
t−1)+vt−1(y

∗
t−1)+wV

t (x
∗
t−1, y

∗
t−1) >

uV t−1(x
q
t−1) + vt−1(y

q
t−1) + wV

t (x
q
t−1, y

q
t−1), then

∂wV
t−1

∂yqt−1
=

∂wV
t−1

∂xq
t−1

= 0 and the envelope the-

orem delivers that also
∂wP

t−1

∂yqt−1
=

∂wP
t−1

∂xq
t−1

= 0. Instead, if the constraint is binding then

wt−1(x
q
t−1, y

q
t−1) = uV t−1(x

q
t−1) + vt−1(y

q
t−1) +wV

t (x
q
t−1, y

q
t−1). Therefore,

∂wV
t−1

∂yqt−1
= v′t−1(y

q
t−1) +

∂wV
t

∂yqt−1
and

∂wV
t−1

∂xq
t−1

= u′
V t−1(y

q
t−1) +

∂wV
t

∂xq
t−1

. Again, the envelope theorem yields
∂wP

t−1

∂xy
t−1

= −λ∗ ∂w
V
t−1

∂xq
t−1

and
∂wP

t−1

∂xq
t−1

= −λ∗ ∂w
V
t−1

∂xq
t−1

. Thus, the derivatives of the wi
t−1 have the desired form as well.

D Different Weights on Dimensions

Here, we consider the baseline model where v(y) ≡ v1(y) = v2(y), so there is no change in

preferences on the Y dimension, but we assume that the two players put different weights on

the two dimensions. Specifically, assume that the proposer’s stage utility is uPt(x) + θv(y),

with θ > 0. As in the baseline, the veto player’s stage utility is instead uV t(x)+v(y). Further,

assume that ŷ1 = ŷ2 = ŷ, so that the optimal policy on the Y dimension remains constant.

We show that a policy pair such that x∗
1 < x̂P

1 and y∗1 < ŷ can never be sustained in

equilibrium. Clearly, if Uq is such that the proposer is unconstrained in the first period, the
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equilibrium policy must satisfy x∗
1 > x̂P

1 .

Suppose instead that Uq is sufficiently high that the proposer is constrained in the first

period. To establish a contradiction, suppose that x∗
1 < x̂P

1 , y
∗
1 < ŷ is an equilibrium. Recall

that x̄(x∗
1, y

∗
1) solves uV 2(x) = uV 2(x

∗
1)+v2(y

∗
1). Further, (x

∗
1, y

∗) must solve uV 1(x
∗
1)+v(y∗1)+

uV 2(x
∗
1)+v(y∗1) = Uq. Let x̃ denote the policy that solves uV 1(x)+uV 2(x) = Uq. Suppose that

uV 2(x̃) ≤ uV 2(x
∗
1) + v(y∗1). Then, it must be the case that a deviation to (x̃, ŷ) is profitable

for the proposer, as this bundle is passable by definition and improves the proposer’s payoff

if this inequality is satisfied. Suppose instead uV 2(x̃) > uV 2(x
∗
1) + v(y∗1). Then, the above

equations imply that uV 1(x̃) < uV 1(x
∗
1) + v(y∗1), otherwise uV 2(x̃) > uV 2(x

∗
1) + v(y∗1) and

uV 1(x̃) + uV 2(x̃) = Uq would imply uV 1(x
∗
1) + v(y∗1) + uV 2(x

∗
1) + v(y∗1) > Uq. Therefore, given

concavity and the assumption that x̂V 2 ≤ x̂V 1, the following holds: −v(y∗1) < uV 1(x
∗
1) −

uV 1(x̃) < uV 2(x
∗
1)− uV 2(x̃). Thus, uV 2(x̃) < uV 2(x

∗
1) + v(y∗1), a contradiction.

Finally, note that, as in Acharya and Ortner (2013) and Lee (2020), the proposer may

still want to implement an inefficient policy on the common-values dimension in this setting,

ŷPd < ŷ1. To see this, consider the first-order conditions that (x̂P
d , ŷ

P
d ) must solve, assuming

x(x̂P
1 , ŷ1) < x̂P

2 so that P cannot just achieve its ideal point both periods:

u′
P1(x) +

u′
P2

(
x(x, y)

)
u′
V 2

(
x(x, y)

)u′
V 2

(
x
)
= 0 (58)

θv′(y) +
u′
P2

(
x(x, y)

)
u′
V 2

(
x(x, y)

)v′(y) = 0 (59)

There is always a solution to these necessary first-order conditions where y = ŷ and x

solves u′
P1(x) + u′

P2(x). Indeed, if θ is sufficiently large this solution does maximize P ’s

payoff, as maintaining inefficiency for tomorrow is costly. However, when θ is sufficiently

small P weights the costs of inefficiency less than V and y < ŷ can instead be better. In

this case, from condition (59) we require that θ = −u′
P2

(
x(x,y)

)
u′
V 2

(
x(x,y)

) . When θ is small this implies

that x and y are such that x(x, y) is close to x̂P
2 . Additionally, this condition together with

(58) implies that the policy on the X dimension solves u′
P1(x) − θu′

v2(x) = 0, and hence

x is close to x̂P
1 for θ small. Thus, for θ sufficiently low the inefficient solution yields a

better first-period policy on X, a better second-period policy on X, and the cost from the

inefficiency is relatively negligible.

For example, suppose uit(x) = −(x − x̂)2, with x̂P
1 = −x̂V

1 = 1 and x̂P
2 = −x̂v

2 = 2.

Additionally, let v(y) = −(y − 1)2 and θ = 1
8
. Then (x̂P

d , ŷ
P
d ) ≈ (1.43, .058) which gives a

dynamic payoff of ≈ −.49, versus the best efficient policy (x, y) = (1.5, 1) which yields −.5.
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