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Abstract

Many policy problems are inherently dynamic, and outcomes worsen if policy

is not adapted to changing circumstances. However, even if everyone agrees on

how to address the problem, negotiations do not occur in a vacuum. Thus,

ideological conflicts can infect even common-value issues, distorting negotiation

dynamics and generating inefficiency. We develop a dynamic bargaining model

to study when and how this ideological infection emerges. We find that dynamic

policy problems are vulnerable to ideological infection precisely because the costs

of inaction compound over time. Furthermore, inefficiency is inevitable when

players anticipate conflict to rapidly intensify on the ideological dimension. Our

findings thus offer a stark warning: even issues with clear common ground may

be unable to escape political contagion.
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1 Introduction

Many policy problems are inherently dynamic. A crisis left unaddressed worsens over time,

requiring increasingly bold interventions. Infrastructure deteriorates, necessitating greater

investment tomorrow. Rapid technological innovations continually reshape society, present-

ing governments with new and evolving challenges.

Given the growing price of inaction on these issues, one might expect little disagreement

among policymakers—at least on the direction policy should move. But policymaking does

not occur in a vacuum. Instead, it unfolds in a strategic environment where different issues

are often bundled together, linking common-value policies with ideologically divisive ones.

Omnibus bills, which package unrelated policies together, are a standard tool in legislative

bargaining (Krutz, 2001; Clinton and Lapinski, 2006; Hazama and Iba, 2017; Meßerschmidt,

2021). Similarly, issue linkage is a key tactic in international negotiations (Tollison and

Willett, 1979; Keohane, 1984). As a result, policy proposals that would face little opposition

in isolation instead often become entangled with more contentious debates.

Bargaining over multiple issues at once can fundamentally alter the ability of negotiating

parties to address policy problems. It enables an agenda setter to extract concessions on

ideological or contentious policy dimensions by leveraging the urgency of a shared policy

problem. In a rapidly evolving world, this creates an incentive to delay striking an efficient

agreement today, in order to maximize ideological concessions tomorrow. As a consequence,

conflict over an ideological issue may spill over and distort bargaining on an issue where

both sides have an interest in cooperation. The risk of this kind of ideological infection is

not just theoretical. For example, due to the joint interests of the United States and China in

addressing climate change, in a 2021 interview China’s Foreign Minister Wang Yi described

the issue as an “oasis,” but went on to state that “surrounding the oasis is a desert, and the

oasis could be desertified very soon. China-U.S. climate co-operation cannot be separated
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from the wider environment of China-U.S. relations.” (Stanway, 2021).1 Likewise, in the

context of domestic policymaking in the United States, issue bundling is often blamed for

legislative inaction and delays in Congress, with the consequence that ‘public policy does

not adjust to changing economic and demographic circumstances’ (Barber et al. 2015, p.

41).

In this paper, we develop a game-theoretic model to identify the conditions under which

an “oasis” turns into a “desert”. We find that it is precisely the dynamic nature of the policy

problems described above, where the common costs of inaction compound over time, that

makes them vulnerable to being infected by other more contentious issues. Furthermore,

inefficient outcomes on the common-values policy problem are inevitable when players also

anticipate rapidly intensifying disagreements on the ideological dimension. Interestingly, the

players delay coming to an efficient agreement today despite knowing their opponent will

become more entrenched tomorrow, and thus less willing to yield ideological concessions. In

contrast to prior work, we show that inefficiencies can emerge even in policy areas where

players know ideological disagreement will never arise, and even if there is no change in

proposal power.

In our model, two players repeatedly bargain over both an ideological issue and a common-

values issue. The proposer each period offers a policy on each dimension, and the veto player

accepts or rejects the entire bundle of policies. On each issue, the policy that is implemented

today becomes the status quo tomorrow. To model the dynamic nature of policy issues,

we allow the players’ preferences on both dimensions to evolve over time. The players’

preferences on the common-values dimension are aligned and change in the same way over

time. In contrast, on the ideological dimension players disagree on the optimal policy, and

this disagreement may grow over time. We further discuss below different interpretations of

this preference evolution.

1China’s vulnerability to climate change has pushed leader Xi Jinping to pledge to peak carbon dioxide
emissions before 2030, and achieve carbon neutrality before 2060. For their part, the Biden administration
had committed to similarly ambitious goals, pledging to achieve a net-zero emissions economy by 2050.
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As highlighted above, the ability to link multiple issues together can alter strategic incen-

tives when bargaining. In a static world, this form of issue linkage generates no detrimental

spillovers from the ideological issue to the common-values one. The efficient policy on the di-

mension of agreement also maximizes the ideological concessions the proposer can obtain. As

such, in equilibrium, there is no ideological infection of preferences over the common-values

dimension, and hence no impediment to the players adopting the commonly beneficial pol-

icy. In a dynamic setting, however, this is not always true. The policy implemented on

the common-values dimension today influences the ideological concessions the proposer can

extract from the veto player tomorrow. In turn, this generates the potential for players to

prefer inefficient policies.

We find that a necessary condition for the players’ preferences on the common-values

dimension to become infected is that the marginal cost of inefficiency on this dimension in-

creases over time. This creates compounding costs on the common-values issue, so that any

residual inefficiency the players inherit from the past becomes more and more detrimental

over time. This condition captures the way in which many policy problems evolve. Under-

investment today becomes even more costly as infrastructure continues deteriorating, or a

pandemic that is left unaddressed spreads more and more rapidly.

Increasing marginal costs of inefficiency ensure that, for one or both players, today’s price

of distorting the common-values policy away from the optimum is smaller than the ideological

concessions this residual inefficiency will buy in the future. Absent this compounding, neither

player is incentivized to pursue an inefficient policy on the common-values dimension, since

any future gain on the ideological dimension is completely offset by the immediate cost of

deviating from today’s optimal common-values policy. Thus, the equilibrium common-values

policy is efficient.

While necessary, increasing marginal costs are not enough to generate inefficiency. The

evolution of the ideological dimension are plays a crucial role. To see why, suppose that

the conflict on the ideological dimension increases slowly. In this case, the evolution on
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the common-values dimension (i.e., the worsening of the crisis, the decay in infrastructures)

provides the proposer enough leverage to pass his ideal point tomorrow, even if the policy is

efficient today. Under certain values of the status quo, this is enough to ensure an efficient

policy in equilibrium, even with compounding costs on the common-values dimension.

Conversely, when conflict on the ideological dimension intensifies rapidly, ideological in-

fection of the common-values dimension becomes unavoidable. In this scenario, the proposer

prefers to undershoot the optimal common-values policy today, e.g., underinvest in infras-

tructure or only partially address a crisis, to strengthen his bargaining position on the ideo-

logical dimension tomorrow. Instead, the veto player prefers to overshoot the optimal policy

today to constrain the proposer tomorrow, e.g., investing to not only fix but also prevent

future infrastructure decay or further crises. As a consequence, the equilibrium common-

values policy is always inefficient. Thus, in the presence of compounding costs of inefficiency,

rapidly intensifying disagreement on the dimension of conflict is sufficient to guarantee that

ideological infection emerges.

Finally, we characterize the form the inefficiency takes in equilibrium and the location of

the ideological policy. Depending on the environment, inefficiency may manifest as proposer-

induced undershooting or veto-induced overshooting. Importantly, we find that, under some

conditions, the proposer undershoots the optimal common-values policy and chooses an

ideological policy more moderate than both its first and second-period ideal points. This

last result highlights that the proposer may choose an inefficient policy to preserve leverage

for the future even when he still needs leverage today. In this case, a more efficient policy

would allow the proposer to reduce costs on the common-values dimension and shift today’s

ideological policy in their preferred direction. However, the compounding costs of inefficiency

enable the proposer to better exploit the common-values dimension for ideological concessions

in the future.

Our model makes several simplifying assumptions to better illuminate how inefficiency

arises in a dynamically changing environment. However, we show that our main results
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are robust to a number of extensions. First, we find that political turnover can limit the

degree of inefficiency by generating uncertainty over who will hold proposal power, but can

also create inefficiency when none existed before. Second, our baseline model assumes the

players can perfectly predict the evolution of preferences. However, in an extension, we show

that just the possibility of rapidly increasing conflict is enough to generate infection with

compounding costs on the common-values dimension, even if conflict does not increase in

expectation. Our final extension shows that inefficiencies can persist even when bargaining

continues over a long time horizon.

1.1 Applications and Implications

We now briefly return to the examples mentioned above where our model may explain how

dynamic policy problems become entangled with contentious issues, leading to ideological

infection of the common-values issues and policy inefficiencies.

China, the United States, and Climate Change. As mentioned above, US-China

climate negotiations during the Biden administration provide an example of ideological in-

fection under evolving policy problems. The warning of China’s Foreign Minister underscores

that climate cooperation cannot be entirely isolated from other aspects of the bilateral re-

lationship, and suggests that a cooperative approach to climate change might be difficult to

sustain if tensions in other areas continue to escalate. Indeed, climate change and the issue

of Taiwan are both rapidly evolving. After a period of fragile reconciliation beginning in the

late 1980s, tensions between China and Taiwan started intensifying with the election of Tsai

Ing-wen, from the traditionally pro-independence Democratic Progressive Party, as Taiwan’s

first female president in 2016. In this same period, the US has increased its economic re-

lations with Taiwan. These developments have made the issue more salient for both of the

bargaining parties. On the other hand, climate-induced disasters have grown increasingly
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severe and frequent.2 Thus, even when both countries agree on the urgent need to address

an increasingly costly climate crisis, their cooperation on climate policy remains vulnerable

because it can be used as leverage to gain concessions on the issue of Taiwan’s sovereignty.3

Congress, Conflict Expansion, and Ideological Polarization. Two important obser-

vations often characterize accounts of American politics. First, political parties are growing

increasingly polarized. Looking at the United States Congress, measures of polarization

were quite low until the mid 1970s, but have seen a steep increase since that time (Barber

et al., 2015). Second, while political conflict between the parties has remained organized

along classic dimensions of polarization, other issues ‘have been absorbed into it’ (Barber

et al., 2015, p. 23). Indeed, Lee (2005) describes how partisan divisions now extend to is-

sues such as good government, disaster relief, and transportation programs, areas where we

would expect the preferences of ‘both parties and all voters [to be] located at a single point’

(Stokes 1963, p. 372).4 As such, political parties appear to be polarized on virtually all

policy dimensions, including those with little or no ideological connotation. Consequently,

in recent decades we have witnessed a stark decrease in the ability of Congress to legislative

efficiently, even on common-values issues (Layman, Carsey and Horowitz, 2006). This case

highlights how increasing polarization can generate ideological infection of common-values

policy problems, with Congress seemingly unable, or unwilling, to address even the most

pressing issues facing the country, instead choosing to ‘kick the can down the road (...) and

govern by (artificial) crises’ (Barber et al. 2015, p. 41).

Broader Implications. These cases highlight the broader implications of our theory for

understanding conflict dynamics and political polarization, offering both reason for optimism

and cause for concern. On the hopeful side, our findings suggest that polarization does not

2
https://www.pbs.org/newshour/science/scientists-confirm-global-floods-and-droughts-worsened-by-climate-change.

3
https://time.com/6295941/us-china-climate-cooperation-challenge/.

4The insights of our model would still apply if, for example, there is some disagreement about the optimal
degree of disaster relief, but a continuing disaster moves preferences in the same direction.
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necessarily stem from deep-seated disagreements but can instead arise from strategic incen-

tives in bundled bargaining. This opens the door for institutional reforms aimed at reducing

polarization and improving efficiency. For instance, many countries allow the executive to

exercise a line-item veto, rejecting specific provisions of a bill without vetoing it entirely.

This mechanism eliminates the proposer’s ability to exploit inefficiencies for strategic gain.

Notably, the U.S. introduced a line-item veto in 1996 precisely to curb pork-barrel spending,

only for the Supreme Court to strike it down as unconstitutional two years later.

Less optimistically, our theory suggests that in an era of rapid change, growing ideological

polarization, and intensifying global tensions, the notion that any issue can remain untouched

by these forces may be an illusion. Even in the stark case we consider in our model—where

no fundamental disagreement exists on the common-values dimension—ideological infection

often proves inevitable.

1.2 Contribution to the Literature

Our paper unpacks how the ability to bundle multiple issues together influences bargaining

outcomes in a dynamic environment. Other works study the effects of bundling different

dimensions, but consider a one-shot interaction or assume bargaining concludes once an

agreement is reached (e.g., Fershtman, 1990; Jackson and Moselle, 2002; Chen and Eraslan,

2013; Salam, 2020). Consequently, the inefficiencies we find due to evolving preferences and

an endogenous status quo do not arise in these models.

Similar to our paper, Callander and Martin (2017) studies an endogenous status quo

bargaining model where policies have an ideological and a (common values) quality com-

ponent. Quality decays over time but can be restored. However, in Callander and Martin

(2017) there is never inefficiency on the equilibrium path of play, i.e., the proposer never

underinvests in quality for future leverage. Our analysis highlights two important features

of the environment that drive this difference in outcomes. First, we find that the proposer

develops a preference for inefficiency only when players anticipate intensifying disagreements
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on the dimension of conflict in the future. Polarization on the ideological dimension does

not change over time in Callander and Martin (2017), and therefore proposer-induced inef-

ficiency cannot arise. Second, in Callander and Martin (2017) parties cannot overinvest in

quality today to avoid future decay. Thus, the veto-player induced overshooting inefficiency

that emerges in our setting cannot occur in their model.

A small number of other papers have also analyzed how dynamic incentives can lead to

inefficient agreements and delay when players bargain over multiple issues. Fox and Polborn

(2024) analyze how different veto institutions alter parties’ incentives to inefficiently bundle

common-values policies with divisive policies. However, in Fox and Polborn (2024) policies

do not continue across periods, as such the incentive to maintain leverage for tomorrow,

which is crucial in our model, does not exist in their setting.

Incentives to preserve leverage for the future also exist in Acharya and Ortner (2013)

and Lee (2020). However, the emergence of inefficiency in these models depends crucially on

two assumptions. First, not all issues (or goods) are immediately available for the players

to bargain over. Second, the two players place different weights on each issue.5 Under

these assumptions, agreements may be delayed because one player values today’s issues less

and waits to bundle with his preferred issues when it becomes available in the future. In

this sense, in these papers inefficiency emerges when the proposer does not ‘need’ leverage

today. In our model, neither of these features are present, yet parties still agree to inefficient

policies. In particular, all issues are available in each period, and equally valued by both

players. Rather we assume preferences can evolve over time and inefficiency in multi-issue

bargaining arises due to increasing marginal costs on the common-values dimension.6

This difference in mechanisms is emphasized by our unique finding that the proposer

sometimes pursues an inefficient common-values policy even when doing does not allow him

5In Lee (2020), on each issue both players prefer the alternative policy to the status quo, but the payoff
they obtain from the alternative is different.

6A further difference is that we consider a setting where players can pass policy on the same issue multiple
times, while agreement in Acharya and Ortner (2013) and Lee (2020) settles (at least partially) the issue.
Additionally, there is no scope for veto-player induced overshooting in either paper. On the other hand, our
model abstracts from elections, whereas Lee (2020) explicitly incorporates voters.
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to pull the ideological policy at least to his first-period ideal point.7 Thus, our analysis com-

plements these papers by explaining situations in which issue bundling leads to inefficiency,

even when all issues are available to bargain over and doing so is also ideologically costly.

From an empirical standpoint, this seems to be the relevant case for the applications we dis-

cuss above. For example, the U.S. and China have had the opportunity to bargain over both

Taiwan and climate change for many years, and it is unlikely that the U.S. or China is willing

to stall an effective environmental agreement because one country has already obtained its

current ideal policy on Taiwan (or places very little weight on the issue).

More broadly our research contributes to the extensive political economy literature that

explores bargaining with an endogenous status quo (see Eraslan, Evdokimov and Zápal

(2022) for a review of this literature). Previous papers in this literature that incorporate

multiple policy dimensions have focused on issues of existence (Duggan and Kalandrakis,

2012) and indeterminacy (Anesi and Duggan, 2018) of equilibria. Closer to our work, Penn

(2009) allows for multiple dimensions and characterizes how continuing policies can distort

preferences. However, proposals are exogenous in her model, which focuses on voting be-

havior. In contrast, the endogeneity of proposals is a crucial determinant of preferences our

model. Chen and Eraslan (2017) also analyzes dynamic bargaining with multiple policy di-

mensions, but assumes parties can only address one issue at a time. Instead, we specifically

focus on the effects of bundling different dimensions.

The mechanism that generates inefficiency in our setting differs from models of endoge-

nous status quo bargaining over one dimension. Previous papers have found inefficiencies

that stem from motives such as insurance against turnover (Buisseret and Bernhardt, 2017)

or the possibility of developing future conflict on the issue (Riboni and Ruge-Murcia, 2008;

Zápal, 2011; Dziuda and Loeper, 2016; Austen-Smith et al., 2019). Instead, in our model,

distortions are due to the multidimensionality of the policy space combined with the evolu-

7In the Appendix, we formalize the difference between these papers and our mechanism. We shut down
compounding costs on the common-values issue but allow the players to weight the dimensions differently.
We show that, while the policy outcome can be inefficient, the proposer only ever maintains leverage on the
common-values dimension if he also pulls the ideological policy at least as far as his first-period ideal point.
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tion of preferences over time. We demonstrate that in a multidimensional world preferences

over a common-values issue can become distorted even when the proposer is guaranteed to

remain in power indefinitely, and the players are certain they will never disagree on this

dimension.8 As such, the potential for inefficiency to emerge may be even more severe than

previously shown.

Finally, our work is also related to studies that analyze multidimensional bargaining

where players can make transfers to each other (e.g., Austen-Smith and Banks, 1988; Dier-

meier and Merlo, 2000). Similar to a transfer, our proposer can use the common-values di-

mension to obtain favorable policy on the partisan dimension. However, the common-values

dimension in our model differs from a transfer because both players benefit from moving

policy to the common-values ideal point, therefore inefficiency is costly for the proposer as

well.

2 The Model

Players and policies. There are two players, a proposer (P ) and veto (V ), who interact

over two periods, t ∈ {1, 2}. The policy space is composed of an ideological dimensionX = R

and a common-values dimension Y = R. In every period t, the players bargain to determine

a policy outcome (xt, yt) ∈ X × Y = R2.

Preferences. The stage utility to player i ∈ {P, V } in period t from a policy outcome (x, y)

is uit(x) + vt(y), where we define uit(x) = u(x− x̂i
t) and vt(y) = v(y− ŷt). We assume u and

v are twice differentiable with continuous second derivatives, that u is strictly concave, and

that both functions are single peaked at 0. Thus, player i’s statically optimal policy in period

t is given by its ideal point (x̂i
t, ŷt) ∈ R2. Additionally, let uit(x̂

i
t) = vt(ŷt) = 0. The standard

quadratic loss function −(x − x̂i
t)

2, for example, satisfies these conditions. In each period,

8This distinguishes our work from papers that find strategic polarization on a single dimension that can
exhibit conflict (Dziuda and Loeper, 2018), or that study how the potential for future changes in polarization
impact the selection of procedural rules (Diermeier, Prato and Vlaicu, 2020).
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player P ’s preferred ideological policy is to the right of player V , x̂V
t < x̂P

t , and we allow

conflict on the ideological dimension to (weakly) increase over time, x̂V
2 ≤ x̂V

1 < x̂P
1 ≤ x̂P

2 . To

reduce the number of cases, on the common-values issue we assume the shared ideal policy

(weakly) increases over time, ŷ1 ≤ ŷ2.

In our baseline model, the sequence of ideal policies is common knowledge. Thus, the

evolution of preferences is deterministic and the parties in our baseline model face no uncer-

tainty. We later discuss the robustness of our results to relaxing this perfect foresight.

Player i’s payoff in the dynamic game is given by:

∑
t∈{1,2}

uit(xt) + vt(yt),

where for simplicity we assume no discounting.

Political environment. At the start of each period t ∈ {1, 2} player P makes a proposal

(xt, yt) ∈ R2, which consists of a policy on the ideological issue, xt ∈ X, and a policy on

the common-values issue, yt ∈ Y . Next, player V decides whether to accept or reject the

proposal. If the proposal is accepted then the policy outcome in period t is (xt, yt). If the

proposal is rejected then the policy outcome in period t is (xq
t , y

q
t ) ∈ R2, where (xq

t , y
q
t ) is the

status quo in period t. Thus, proposals on the two dimensions are bundled together.

The policy outcome in the current period becomes the status quo in the subsequent pe-

riod. Thus, if (x1, y1) is the policy outcome in period 1 then the status quo in period 2

is (xq
2, y

q
2) = (x1, y1). The status quo at the beginning of the game is exogenously set at

(xq
1, y

q
1) ∈ R2.

A definition of efficiency. In our analysis below, we will use the following terminology:

Definition 1. A policy outcome (xt, yt) in period t is efficient if it sets the common-values

policy at yt = ŷt. Otherwise, a policy (xt, yt) is inefficient.
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According to our definition, an inefficient outcome is always Pareto inefficient as well

(both statically and dynamically). Specifically, static Pareto efficiency requires (xt, yt) ∈

[x̂V
t , x̂

P
t ]× {ŷt}, i.e., efficiency on Y and policy in the gridlock interval on X. Given our fo-

cus on understanding when players cannot agree on the common-values issue, our definition

sidesteps that even with efficiency on the common-values dimension the outcome may be

Pareto inefficient if the ideological policy xt is not in the interval [x̂V
t , x̂

P
t ].

Discussion of the model. In our baseline model there is no turnover in proposers, no

uncertainty about changes in ideal points, and no asymmetry across players’ utility functions

(besides ideal points). These assumptions allow us to isolate the mechanism that drives our

results, while shutting down features that have previously been shown to cause inefficiency.

Additionally, we consider a two-period model in order to obtain sharper results. However,

none of these assumptions undermine the core mechanism of our model. We later consider

extensions relaxing each of these assumptions.

In order to more clearly illustrate our results, we assume the players share exactly the

same ideal policy on the Y dimension. However, our intuitions apply broadly to cases in

which players face some disagreement on this dimension, but the status quo is outside of the

gridlock interval and the players’ ideal points shift in the same direction over time. In other

words, the crucial feature of the Y dimension is that players always agree on the optimal

direction of policy change. For example, even if the US and China disagree on who should

shoulder more of the burden for addressing climate change, they may agree that more needs

to be done as the situation worsens.

In contrast, the assumption that x̂V
2 ≤ x̂V

1 < x̂P
1 ≤ x̂P

2 ensures that the X dimension

always features conflict and thus distinguishes it from a common-values dimension.9 Absent

this assumption, a policy that is in the gridlock interval on X in the first period can become

9Likewise, assuming u is concave ensures that the players become more resistant to changes on the X
dimension when their ideal points move apart, capturing the idea of increasing conflict. We further discuss
this in the Appendix.
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unstuck, even without the Y dimension, if the ideal points of both players move closer

together or shift in the same direction in the second period. Indeed, our analysis highlights

that in a dynamic setting distinguishing policy issues that feature conflict from those with

common values depends both on the current location of ideal points and how these ideal

points change over time. Figure 1 depicts an example of this evolution.

To clearly illuminate our mechanism we limit the number of degrees of freedom by fixing

the shapes of v and u across periods, and only allowing the ideal points to shift. However,

under relatively mild assumptions, which ensure that players still become more entrenched

on the X dimension between periods, our results are robust even if we allow these shapes

to change as well. Thus, the insights of our model can apply to a broad number of ways in

which preferences may change. In the Appendix we prove our results while allowing for v

and u change over time.

In order to sharpen the intuition behind our results, players in our baseline model can

perfectly anticipate how their own ideal points will change in the future. This perfect fore-

sight, however, is not essential to our logic. As we discuss in Section 4, similar incentives

exist when the players face uncertainty over the evolution of optimal policies and even if, in

expectation, conflict on the ideological dimension remains unchanged.

x̂V
1 x̂P

1xq
1

yq1

ŷ1 •

•

•

• •

x̂V
2 x̂P

2

ŷ2

Figure 1: Example of increasing polarization in the evolution of preferences.

Examples of changing preferences. Thus, the two key features of our model are the

multidimensionality of the policy space and the possibility of changing preferences on these
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dimensions. We now give some brief examples which microfound how preferences can shift

over each policy dimension.

First, consider the evolution of preference over the common-values dimension. One di-

rect interpretation is that ideal points may shift due to changes in the environment, e.g.,

vt(y) = −(y − θt)
2. For example, the players may anticipate that innovations will make

green technologies cheaper, increasing the optimal amount of green energy sources used in

the future compared to today.

More generally, changing preferences on Y can capture evolving circumstances that alter

the optimal policy intervention, for example due to a worsening crisis or deteriorating infras-

tructure.10 In each of these cases, the statically optimal policy changes from one period to

the next.11 To fix ideas, interpret ŷt as the statically optimal amount of investment needed

to fix infrastructure today or address the ongoing crisis today. Even with investments today,

infrastructure may continue to deteriorate or the crisis may persist (or a new one emerge). As

such, the marginal benefit from investing more resources increases as the problem worsens.

In turn, the statically optimal level of investment increases over time.12

Next, consider the evolution of the conflict on the X dimension. In general, bargaining

players can anticipate changes in their future preferences as a result of the evolution of a

policy-relevant state of the world. Suppose that player i’s preferences in period t are given

by ui(x − βi × θt), where θt ≥ 0, βi > 0 and β−i < 0. Here, the two players agree on the

fundamental state of the world θt, but disagree on the implications for optimal policies. Then,

our assumption of weakly increasing conflict reflects a situation where players anticipate θt

increasing over time, increasing the distance in their respective induced ideal points. For

10Important for our framework is that policymakers can invest to not only correct, but also possibly
prevent, this decay.

11In the Appendix we also allow the shape of v to change over time, which further captures how the
payoffs from not adjusting policy can change over time. In this case, infection can still emerge if ŷ is fixed
but preferences intensify over time, e.g., θtv(y) with θ2 > θ1.

12Depending on the application, it may be more accurate to model a crisis as shifting the status quo, as
in Callander and Martin (2017), rather than preferences. However, in either case, the crucial feature for
our results is that the marginal cost of inefficiency on Y increases over time. As such, we opt for the more
streamlined setting where preferences can change on both dimension.
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example, this can capture the observation that globalization has contributed to an increase

in polarization, with an intensifying conflict between left- and right-wing parties on issues

such as immigration or economic protectionism.13

Alternatively, the assumption of increasing conflict can capture that the players foresee

the salience of the divisive issue to increase. For example, consider two countries bargaining

over a territory of size 1 in each period. Initially, the payoff to controlling a share x ∈ [0, 1]

of the territory is u(x). However, the countries expect the territory to become strategically

more important or more valuable in the future, and thus the payoff from controlling share

x in the second period increases to θu(x), with θ > 1. In this case, countries prefer to

control the entire territory in both periods, but the increased value from controlling any

share x ∈ [0, 1] makes each country more sensitive to losing territory. In this example,

the players’ ideal point remains fixed, but their preferences intensify. Notice that this is a

slightly different operationalization of increasing conflict, but it is qualitatively equivalent

to the baseline presented above, as we demonstrate in Section 4.

Within the context of legislative bargaining, shifting ideal points can also model (in re-

duced form) situations in which parties expect increasing polarization among their respective

constituents or members, continuing the trend of previous decades. In this view, the party

leadership acts as a delegate of the members. As a result, if the party anticipates an evolu-

tion in the preferences of its base, it will act as if it expects its own preferences to change.

As long as the party leadership aims at maximizing the long-run welfare of the party, it

will face the dynamic incentives we describe in the model (this is true even if the members

themselves do not foresee the preference evolution).

13See Rodrik (2021) for a review of the literature on this topic, discussing how globalization and the
resulting labor market shocks can increase polarization by driving a ‘greater wedge between winners and
losers’ of this process (p. 164).
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3 Analysis

Moving to the analysis, our solution concept is subgame perfect equilibrium and we proceed

by backwards induction. In the second period, players only consider their static payoffs.

Thus, V accepts any policy (x, y) such that:

uV 2(x) + v2(y) ≥ uV 2(x
q
2) + v2(y

q
2). (1)

V is only willing to accept an ideological policy that moves farther away from its ideal

point on X if the proposal improves on the common-values status quo. Consequently, if the

inherited status quo is inefficient, yq2 ̸= ŷ2, then P can extract concessions on the conflict

dimension by proposing a bundle that moves the common-values policy closer to ŷ2.

In equilibrium, P chooses its proposal to maximize uP2(x) + v2(y) subject to (1). Let

x(xq
2, y

q
2) be the upper solution to:

uV 2(x) + v2(ŷ2) = uV 2(x
q
2) + v2(y

q
2). (2)

Lemma 1 characterizes P ’s optimal second-period proposal.

Lemma 1. In the second period P proposes y∗2 = ŷ2 and x∗
2(x

q
2, y

q
2) = min

{
x̂P
2 , x(x

q
2, y

q
2)
}
.

Proposing y = ŷ2 maximizes V ’s utility from the offer on the common-values dimension,

and thus maximizes V ’s willingness to accept a worse payoff on the ideological dimension. As

such, the efficient policy y = ŷ2 both maximizes P ’s payoff on the common-values dimension

and the extent to which P can move the outcome towards its ideal policy x̂P
2 . Therefore,

the equilibrium policy outcome is always efficient, emphasizing that the ability to bundle

dimensions does not lead to inefficiency absent dynamic motives.

Lemma 1 emphasizes that the second-period equilibrium outcome depends on the pol-

icy implemented in the previous period. Turning to the first period, then, the players mus
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balance their static preferences against their dynamic incentives. The players’ dynamically

optimal policies induced by these strategic considerations are central to our concept of ide-

ological infection. It is therefore useful to introduce the following definition of a player’s

dynamic ideal point.

Definition 2. Player i’s dynamic ideal point (x̂i
d, ŷ

i
d) solves

max
x,y

ui1(x) + v1(y) + ui2

(
x∗
2(x, y)

)
.

Thus player i’s dynamic ideal point is the policy that i would choose to implement today,

anticipating bargaining tomorrow.

Lemma 2 provides an initial characterization of these dynamic ideal points.

Lemma 2. On the Y dimension ŷPd ≤ ŷ1 ≤ ŷVd . On the X dimension x̂V
2 ≤ x̂V

d ≤ x̂V
1 and

x̂P
1 ≤ x̂P

d ≤ x̂P
2 .

Although both players prefer the efficient common-values policy today, their incentives to

influence future policy outcomes can lead to divergent dynamic preferences. From equation

(1), we see that moving yq2 further from ŷ2 increases x(x
q
2, y

q
2), i.e., it increases the proposer’s

second-period leverage. As such, the proposer’s second-period equilibrium payoff increases

when the inherited common-values policy is further from ŷ2, as shown in Figure 2. Conversely,

the veto player’s second-period payoff increases when y1 moves closer to ŷ2, as this limits

the proposer’s leverage in the second period. Consequently, P prefers a policy that weakly

undershoots the efficient common-values policy, ŷPd ≤ ŷ1 < ŷ2, while V prefers a policy

that weakly overshoots it, ŷ1 ≤ ŷVd < ŷ2. As we will show, under some conditions these

inequalities hold strictly, leading to ideological infection.

Notice that each player’s dynamic preferences on the conflict dimension can also be

distorted from its static ideal policy. For player i a policy closer to x̂i
2 improves its equilibrium

policy payoff tomorrow and worsens the other player’s. As such, each player’s dynamic ideal

point lies in between its first and second-period optimum.
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Figure 2: Second-period equilibrium payoffs as a function of yq2, if players have quadratic utility

on both dimensions.

It is important to note that this distortion of preferences on X would emerge even in

a model without the Y dimension. Absent the Y dimension, policy is always stuck (in

the gridlock interval) and P ’s dynamic ideal point is again in (x̂P
1 , x̂

P
2 ), as this balances its

payoff from today versus tomorrow. In contrast, in a model with only the Y dimension

there is no difficulty in agreeing to the efficient policy today and tomorrow. Consequently,

any preference divergence on the common-values dimension is due solely to the existence of

multiple dimensions.

We now formally introduce the concept of ideological infection.

Definition 3. If ŷPd = ŷVd = ŷ1 there is no ideological infection. Otherwise, if ŷPd ̸= ŷVd then

there is ideological infection. In particular, if ŷid ̸= ŷ1 then i’s preferences are infected.

Ideological infection emerges when one (or both) players prefer an inefficient common-

values policy in the first period. In the subsequent sections, we unpack the conditions under

which ideological infection occurs, when infection leads to inefficient policy outcomes, and

the form of inefficiency that emerges.

3.1 The Role of Compounding Costs of Inefficiency

We first provide a necessary condition for ideological infection to emerge. Although players

have dynamic incentives to distort policy in the first period, any inefficiency exploited to gain
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an advantage tomorrow imposes a cost on both players today. Thus, the players’ dynamic

incentives do not necessarily lead to infection of preferences on the common-values dimension.

We show that the key feature is whether the gains from moving policy to be more efficient are

relatively greater in the second period or the first. Specifically, whether ideological infection

can occur in equilibrium depends on the marginal cost of an inefficient policy in the first

period versus the second period. We describe this condition with the following definition:

Definition 4. The costs of inefficiency are compounding over time if the following condition

holds:

v′2(y) > v′1(y) for y ≤ ŷ1. (3)

Instead, the costs of inefficiency reduce over time if:

v′2(y) ≤ v′1(y) for y ≤ ŷ1.

Notice that if the costs of inefficiency reduce over time then it must be the case that

ŷ1 = ŷ2, as otherwise v′2(ŷ1) > 0 = v′1(ŷ1). Instead, if (3) holds then we must have ŷ1 < ŷ2.

Thus, in our baseline model, the costs of inefficiency compounding is equivalent to movement

in the common-values ideal point.14

To see the importance of compounding costs for infection, first consider P ’s preferences

and suppose v is concave. Figure 3 illustrates such a case. Recall that an inefficient policy

that undershoots ŷ1 imposes costs on both parties in the first period and increases the cost

to the veto player for maintaining the status quo in the second period. In turn, this allows

P to pull x2 closer to x̂P
2 . Thus, ideological infection of the proposer’s preferences requires

that the anticipated increase in ideological concessions from the veto player in the second

14We adopt the definition of compounding in terms of condition (3), rather than the change in ŷt, because
our analysis in the Appendix allows the shape of v to change over time. Under this generalization, the two
concepts are no longer equivalent and it becomes clear that increasing marginal costs of inefficiency is the
crucial necessary condition for ideological infection.
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Figure 3: Common-values utility in first and second period.

period is higher than the immediate cost.

Under concavity, compounding costs of inefficiency imply that:

|v2(y)− v2(ŷ1)| > |v1(y)− v1(ŷ1)| (4)

for any y < ŷ1. In turn, inequality (4) indicates that the increased second-period cost on the

veto player is greater than the cost that both parties pay for inefficiency in the first period

(as shown in Figure 3). This wedge in the cost of residual inefficiency today and tomorrow

creates the possibility for P to benefit from a policy that undershoots the static optimum

on Y . If instead v′2(y) ≤ v′1(y) for y < ŷ1, then tomorrow’s ideological gains are always lower

than today’s cost of inefficiency, and the proposer’s preferences are not infected.

A similar logic explains V ’s dynamic preferences. If the costs of inefficiency reduce over

time, then ŷ1 = ŷ2, thus, the efficient first-period policy is also the policy that minimizes the

proposer’s leverage in the second period. Consequently, the efficient policy is dynamically

optimal for the veto player. As such,
v′2(y)

v′1(y)
≤ 1 immediately removes any distortion of V ’s

preferences. If instead
v′2(y)

v′1(y)
> 1 then the wedge in the cost of residual inefficiency creates

the possibility that V benefits from overshooting ŷ1, and therefore V ’s preferences may be

infected.

Building on this discussion, Proposition 1 shows that reducing costs of inefficiency over

time eliminates ideological infection.
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Proposition 1. If the costs of inefficiency reduce over time then there is no ideological

infection, ŷPd = ŷVd = ŷ1. Furthermore, the equilibrium policy outcome is efficient, y∗1 = ŷ1.

Absent ideological infection neither player has a preference for inefficiency, and the players

have no difficulty coming to an efficient agreement. Thus, on issues for which the cost of

inefficiency reduces over time, efficiency prevails.

3.2 The Role of Increasing Ideological Conflict

Our previous results establish that ideological infection never emerges when the costs of

inefficiency reduce over time, and thus some degree of compounding is necessary. We now

complete the analysis by showing that whether infection actually emerges in equilibrium

also depends on how preferences evolve on the X dimension. Specifically, we find that, with

compounding costs of inefficiency, a sufficient condition for infection is rapidly increasing

conflict on the ideological dimension.

Throughout this section we maintain the assumption that the costs of inefficiency are

compounding over time. Recall that this implies ŷ1 < ŷ2.

Assumption 1. The costs of inefficiency are compounding over time:

v′2(y) > v′1(y) for all y ≤ ŷ1. (5)

To characterize the conditions under which each player’s preferences are infected we first

define two cut-points:

uP ≡ uV 2(x̂
P
1 ) + v2(ŷ1), (6)

uV ≡ uV 1(x̂
V
α ) + v1(ŷ

V
α ) + uV 2(x̂

V
α ) + v2(ŷ

V
α ), (7)

where (x̂V
α , ŷ

V
α ) characterizes V ’s dynamic ideal point in the case where P does not obtain

x̂P
2 in the second period. Proposition 2 now characterizes when each player’s preferences are
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infected.

Proposition 2.

1. V ’s preferences are infected if and only if uV 2(x̂
P
2 ) < uV ; and

2. P ’s preferences are infected if and only if uV 2(x̂
P
2 ) < uP .

Furthermore, uP < uV .

Whether compounding costs of inefficiency generate infection depends on the anticipated

degree of conflict in the future, characterized by uV 2(x̂
P
2 ). To see why, consider the condition

for P ’s preferences to not be infected:

uV 2(x̂
P
2 ) + v2(ŷ2) ≥ uP = uV 2(x̂

P
1 ) + v2(ŷ1) (8)

In this case, the increase in conflict on the ideological dimension is low relative to the

change on the common-values dimension. Specifically, if condition (8) is satisfied then P

has enough leverage in the second period to pass its ideal point, even if the status quo is

at the first-period efficient policy ŷ1. As such, P has no incentive to undershoot on the

common-values dimension, or implement an extreme policy on the ideological dimension. In

contrast, if the players anticipate significant conflict in the second period, uV 2(x̂
P
2 ) < uP ,

then P does not have enough leverage to get its preferred policy when the inherited status

quo is (x̂P
1 , ŷ1). As a consequence, P ’s dynamically optimal policy undershoots the efficient

ŷ1.

Notice that we can rewrite condition (8) as uV 2(x̂
P
1 )− uV 2(x̂

P
2 ) ≤ v2(ŷ2)− v2(ŷ1). Thus,

under this condition, the conflict on the ideological dimension increases slowly relative to

the evolution of the common-values issue. Furthermore, if the players’ ideal points on X

are the same in period 2 and in period 1 then uV 2(x̂
P
1 ) = uV 2(x̂

P
2 ) and condition (8) always

holds. Consequently, infection of the proposer’s preferences requires conflict on the ideologi-
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cal dimension to increase over time. Furthermore, this increase needs to be sufficiently rapid

relative to the evolution of the common-values dimension.

A similar calculation determines whether the veto’s preferences are infected. If there is

sufficiently little disagreement in the second period, then the proposer can obtain x̂P
2 even

if the first-period policy overshoots ŷ1. In turn, inefficiency does not constrain P in the

second period, and V ’s optimal first-period policy is (x̂V
1 , ŷ1). Additionally, because P holds

the bargaining power, the anticipated amount of conflict needed to induce infection in V ’s

preferences is lower than the amount needed to infect V , uV < uP . Specifically, it is easier

for P to move policy to (x̂P
2 , ŷ1) from (x̂P

1 , ŷ1) than from (x̂V
1 , ŷ1).

We note that, if ŷ2 − ŷ1 is not too large, then uV 2(x̂
P
1 ) < uV . Therefore, infection of V ’s

preferences can emerge even if there is no change on the ideological dimension across periods.

However, if ŷ2 − ŷ1 is sufficiently large, then infection of the veto player’s preferences also

requires rapidly increasing disagreement on the dimension of conflict.

The above discussion highlights that a significant increase in the intensity of the ideolog-

ical conflict from the first to the second period is necessary and sufficient to ensure that both

parties’ preferences are infected (illustrated in Figure 4). As Proposition 3 now establishes,

this makes an inefficient equilibrium policy inevitable.

Let Uq = uV 1(x
q
1) + v1(y

q
1) + u

(
x∗
2(x

q
1, y

q
1)
)
denote V ’s dynamic equilibrium payoff from

keeping the status quo. The first-period equilibrium policy then maximizes the proposer’s

dynamic utility, subject to the constraint that the veto player’s dynamic utility is no less

than Uq.

Proposition 3.

1. Assume V ’s preferences are infected but P ’s preferences are not. If Uq ≤ uV 1(x̂
P
1 ) +

uV 2(x̂
P
2 ) then the equilibrium policy is efficient. Otherwise, the equilibrium policy is

inefficient for almost all (Uq, x̂
V
1 ).

2. If both players’ preferences are infected then the equilibrium policy is inefficient for
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Figure 4: Dynamic ideal points under rapidly increasing polarization.

almost all (Uq, x̂
V
1 ).

If only the veto player’s preferences are infected, i.e., uP < uV 2(x̂
P
2 ) < uV , then the

equilibrium policy on the common-values dimension may still be efficient. When the initial

status quo Uq is bad for the veto player, the proposer can pass its optimal bundle. In

particular, following our previous discussion, P can obtain its statically optimal bundle in

both periods and the equilibrium is efficient. Otherwise, if Uq is high, then the proposer is

constrained in the first period. Thus, to appease the veto player, P proposes an inefficient

policy, even though P ’s own preferences are not infected.

Instead, if the preferences of both players are infected, which occurs when uV 2(x̂
P
2 ) < uP ,

then inefficiency is inevitable. The efficient policy always leaves P with too little or too

much leverage in the future. Thus, by Proposition 2, we should expect inefficiency to be

most pervasive when players anticipate the conflict to intensify rapidly.

Having established the conditions for the emergence of inefficiency, we conclude this

section by analyzing the nature this inefficiency takes in equilibrium and how it influences

the policy on the ideological dimension. In particular, the value of Uq is crucial in determining

the policy outcome. Suppose that uV 2(x̂
P
2 ) < uP , so the policy is (almost) always inefficient.

When Uq is very low, the status quo is highly favorable to the proposer. Consequently, P

can pass a policy close to its unconstrained optimum; hence, y∗1 < ŷ1 and x∗
1 > x̂1, aligning

with the proposer’s dynamic preferences. A similar symmetric logic holds when Uq is very
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high. The status quo is very favorable for the veto player, and therefore P has little leverage

to pull the conflict-dimension policy close to its first-period ideal. Thus, P needs to propose

a policy close to V ’s dynamic ideal point, binding himself in the future to obtain larger

concessions today. The equilibrium in this case is characterized by a veto-player-induced

inefficiency. The common-values policy overshoots the first-period ideal, y∗1 ∈ (ŷ1, ŷ
V
d ), and

the conflict policy remains below P ’s ideal point, x∗
1 < x̂P

1 .

More interesting is the case where neither player is initially strongly advantaged by the

status quo, i.e., when Uq is intermediate. Intuition may suggest that undershooting on the

common-value dimension should only emerge when the proposer does not need leverage in

the first period. That is, when P can pass x̂P
1 without moving the Y dimension status quo

all the way to the efficient ŷ1, and thus chooses to maintain some inefficiency to increase

leverage for the future. Our next result shows that this is not always the case in our setting:

Proposition 4. Assume uV 2(x̂
P
2 ) < uP . There exists an open interval (U q, U q), such that,

if Uq ∈ (U q, U q) then x∗
1 < x̂P

1 and y∗1 < ŷ1.

When V ’s payoff from the status quo is intermediate the proposer undershoots on the

common-values dimension, y∗1 < ŷ1, and proposes an ideological policy to the left of both

its first- and second-period ideal points, x∗
1 < x̂P

1 . In this case, the proposer could move

policy closer to x̂P
1 — potentially even obtaining its first-period ideologically preferred policy.

However, doing so requires satisfying the veto player by moving the common-values policy

closer to ŷ2, reducing P ’s future leverage. In equilibrium, undershooting occurs despite

the proposer needing more leverage today. The reason P is willing to forgo gains today

is precisely because there are compounding costs of inefficiency on the Y dimension: the

proposer can buy even more concessions tomorrow than it can today by implementing the

efficient ŷ1 and moving x further right. Thus, P chooses to incur immediate costs on the

common-values dimension and forgoes gains on the ideological dimension.

Figure 5 provides an illustration of the first-period equilibrium under the assumption

that the players’ have quadratic-loss preferences on each dimension in each period. Under
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Figure 5: Players’ dynamic ideal points and indifference curves with quadratic utility (blue for the

veto player, red for the proposer). The left-most panel considers Uq < U . In the middle panel we

have Uq ∈ (U,U). In the right-most panel we set Uq > U . Generated from a numerical example

where players have quadratic utility over both dimensions.

quadratic utility whether the equilibrium policy undershoots or overshoots ŷ1 is fully deter-

mined by a unique cutoff in Uq.
15 Specifically, if Uq ≤ U then x∗

1 > x̂P
1 and y∗1 < ŷ1, as

discussed above, P is able to pull the policy close to its dynamic ideal point when the initial

status quo is bad for V . Instead, if Uq ∈ (U q, U q) then we are in the case of Proposition

4 where P leaves leverage on the table despite needing more today, x∗
1 < x̂P

1 and y∗1 < ŷ1.

Finally, when the status quo is favorable to V , Uq > U q, P must tie its hands tomorrow to

appease V by proposing x∗
1 < x̂P

1 and y∗1 > ŷ1.

4 Extensions

In this section we extend the model in several directions. First, we examine the conditions for

ideological infection of the players’ preferences to emerge if there is turnover in the proposer.

Next, we show that infection can additionally still occur if the change in ideal points between

periods is stochastic. Finally, we study bargaining over a longer time horizon. This final

analysis further emphasizes how the speed at which conflict increases on X relative to the

15Providing a full characterization under more general functional forms is challenging, as the equilibrium
policy may cross ŷ1 multiple times and thus not be monotonic in Uq.
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compounding costs of inefficiency on Y matters for the persistence of inefficient policies.

As previously mentioned, in the Appendix we also allow for the shape of the players’ utility

functions to change over time and provide a more general condition that captures the concept

of increasing conflict on the ideological dimension.

4.1 Turnover

Up to this point, we have assumed that player P is always the proposer, emphasizing that

inefficiency and ideological infection in our setting do not stem from fear of the other player

taking power. We now turn our attention to the implications of turnover for our mechanism.

Specifically, we assume P is the proposer in period 1 and remains so with probability ρ ∈

(0, 1) in period 2, while V becomes the proposer with probability 1− ρ.

Now, the second-period outcome depends both on the first-period policy and the iden-

tity of the player selected to be the proposer. If P remains the proposer, the equilib-

rium outcome is as characterized in the baseline model. Letting xV (x
q
2, y

q
2) ≡ x(xq

2, y
q
2),

the second-period outcome is then x∗
P (x, y) = min{x̂P

2 , xV (x, y)}. Suppose instead that P

becomes the veto player in the second period. Then, the relevant threshold characteriz-

ing the set of acceptable policies is xP (x
q
2, y

q
2), which is defined as the lower solution to

uP2(x) = uP2(x
q
2)+ v2(y

q
2). Therefore, the second-period outcome if V becomes the proposer

is x∗
V (x, y) = max{x̂V

2 , xP (x
q
2, y

q
2)}.

We demonstrate that, similar to the baseline model, both players’ preferences are always

infected when ideological conflict intensifies rapidly.

Proposition 5. If uV 2(x̂
P
2 ) < uV 2(x̂

P
1 ) + v2(ŷ1) or uP2(x̂

V
2 ) < uP2(x̂

V
1 ) + v2(ŷ1), then both

players’ preferences are infected for almost all values of ρ ∈ (0, 1).

To understand these conditions, we focus first on P ’s preferences. Suppose ρ = 1, so that

P is certain to remain in power in the second period. The analysis of the baseline model

highlights that P ’s preferences are infected if and only if, by setting y1 = ŷ1 (and x1 = x̂P
1 ),
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P does not maintain enough leverage to obtain its static optimum in the second period.

This condition ensures that any marginal movement away from ŷ1 impacts the outcome of

the second-period bargaining, generating the distortion. Symmetrically, when ρ = 0 and P

is certain to lose power in the second period, infection of his preferences emerges whenever

implementing y1 = ŷ1 (and x1 = x̂P
1 ) in period 1 implies V does not have enough leverage

to pass his optimum in the second period. When ρ is between 0 and 1, marginal movements

away from ŷ1 influence the second-period outcome as long as at least one of these conditions

is satisfied. As a consequence, either one of these conditions is sufficient for P ’s preferences

to be infected. A similar logic applies to player V . Eliminating the least binding conditions,

we obtain that both players’ preferences are infected if uV 2(x̂
P
2 ) < uV 2(x̂

P
1 ) + v2(ŷ1) or

uP2(x̂
V
2 ) < uP2(x̂

V
1 ) + v2(ŷ1), as stated in Proposition 5.

Notice that the above discussion has an important implication: in our setting, turnover

can generate ideological infection. When uV 2(x̂
P
2 ) − uV 2(x̂

P
1 ) > uP2(x̂

V
2 ) − uP2(x̂

V
1 ), the

condition for V to be constrained as a second-period proposer after passing his first-period

optimum is less binding than the analogous condition for P . When P is sure to remain in

power in the second period, this is irrelevant. However, as described above, when ρ < 1

P worries about reducing V ’s leverage should he be selected as the second-period proposer,

and uP2(x̂
V
2 )− uP2(x̂

V
1 ) < v2(ŷ1) is enough to ensure P ’s preferences are infected.

However, our final result shows that turnover can mitigate inefficiency on the intensive

margin, by reducing the degree to which players’ preferences are infected.

Proposition 6. Suppose each player i’s dynamic ideal point is such that xV (x̂
i
d, ŷ

i
d) < x̂P

2

and xP (x̂
i
d, ŷ

i
d) > x̂V

2 . Then, ŷ
P
d is decreasing in ρ and ŷVd is increasing in ρ.

Consider the incentives of the proposer. If ρ is high then P is confident of remaining

the proposer tomorrow and therefore wants to undershoot in the first period. However, as

ρ decreases, P becomes increasing likely to lose power, and moves y towards ŷ1 to offset the

downside of keeping leverage in case V becomes the proposer. Eventually, the probability

of remaining proposer is sufficiently low that P begins to overshoot as insurance against
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V becoming the proposer tomorrow. Thus, there is a unique value of ρ for which the

proposer’s incentives to under and overshoot exactly compensate each other, eliminating

infection. For all other values, infection persists. This implies that, for values of ρ below

this cutoff, increasing turnover reduces the degree to which P ’s preferences are distorted.

This finding suggests that during times of rapidly intensifying ideological conflict, electoral

uncertainty over who will hold power tomorrow can partially mitigate ideological infection

and its consequences, but cannot completely eliminate such distortions.

4.2 Stochastic Evolution of Preferences

In our analysis thus far, we have assumed the players can perfectly anticipate how their

preferences will evolve over time. This assumption is useful to isolate the mechanism behind

our results, but it is an obvious simplification. In this section, we discuss the effects of

relaxing this assumption and consider a version of the model where players face uncertainty

over their second-period optimal policies. First, we highlight that, with compounding costs

of inefficiency, the mere possibility of increased conflict on the X dimension is sufficient to

generate ideological infection. Second, analogously to what we established in the baseline

model, we show that a necessary condition for ideological infection to emerge is that players

expect compounding on the Y dimension.

We start by discussing uncertainty over the conflict dimension. Assume that x̂P2 =

−x̂V 2 = ϵ, where ϵ is drawn from a continuous distribution GX with full support on [0,∞)

and density gX . Thus, polarization may increase or decrease between periods.

For ease of exposition, we focus on infection of P ’s preferences. Now, in the second

period the set of policies V is willing to accept depends on the realization of preferences.

Specifically, x(xq
2, y

q
2; ϵ) solves:

u(x+ ϵ) = u(xq
2 + ϵ) + v(yq2).
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Let ϵ∗(xq
2, y

q
2) solve x(xq

2, y
q
2; ϵ) = ϵ. Realizations for which the players are sufficiently

moderate (i.e., ϵ < ϵ∗(x, y)) allow P to obtain its ideal point in the second period, either

because the status quo now falls outside the gridlock interval or because moderation makes

V relatively willing to grant concessions on X to obtain better policy on Y . Instead, extreme

realizations make V highly reluctant to cede policy on X, making leverage on Y crucial for

P . Consequently, P ’s dynamic preferences are determined by:

max
x,y

uP1(x) + v1(y) +

∫ ∞

ϵ∗(x,y)

uP2

(
x(x, y; ϵ)

)
gX(ϵX)dϵ.

In turn, (x̂P
d , ŷ

P
d ) solves:

u′
P1(x) +

∫ ∞

ϵ∗(x,y)

u′
P2

(
x(x, y; ϵ)

)
u′
V 2

(
x(x, y; ϵ)

)u′
V 1(x)g(ϵ)dϵ = 0 (9)

v′1(y) +

∫ ∞

ϵ∗(x,y)

u′
P2

(
x(x, y; ϵ)

)
u′
V 2

(
x(x, y; ϵ)

)v′2(y)g(ϵ)dϵ = 0. (10)

The first-order condition demonstrates that P ’s preferences are still infected with un-

certainty over x̂P2 and x̂V 2 when there is compounding on the common-values dimension.

Evaluating (10) at y = ŷ1 we have v′1(ŷ) = 0. Furthermore, v′2(ŷ1) > 0 and
u′
P2

(
x(x,y;ϵ)

)
u′
V 2

(
x(x,y;ϵ)

) < 0

for all realizations above ϵ∗, as such the LHS of (10) is strictly negative at y = ŷ1. Thus, just

the possibility of rapid polarization on the X dimension is sufficient to generate infection on

the Y dimension. Notice, this is true even if the mean of GX is x̂P1, and so in expectation

there is no change in polarization (i.e., the shock to the preferences from one period to the

next has mean zero).

We now consider uncertainty over the optimal second-period policy on the common-

values dimension, instead than over X. Suppose that ŷ2 = ŷ1 + ϵ, where ϵ is drawn from a

continuous distribution GY with density gY and full support over the real line.
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Now the set of policies V accepts in the second period is x(xq
2, y

q
2; ϵ), which solves:

uV 2(x) = uV 2(x
q
2) + v(yq2 − ŷ1 − ϵ).

Let ϵ(xq
2, y

q
2) and ϵ(xq

2, y
q
2) be the lower and upper solutions, respectively, to x(xq

2, y
q
2; ϵ) =

x̂P
2 . Extreme shocks shift ŷ2 far from yq2, which gives P enough leverage to obtain its ideal

point in the second period. Therefore, P ’s dynamic ideal point (x̂P
d , ŷ

P
d ) solves

max
x,y

uP1(x) + v1(y) +

∫ ϵ(x,y)

ϵ(x,y)

uP2

(
x(x, y; ϵ)

)
gY (ϵ)dϵ.

Notice, if the support of G was such that ϵ ∈
(
ϵ(x̂P

1 , ŷ1), ϵ(x̂
P
1 , ŷ1)

)
with probability 0 then

P ’s preferences are not infected. Similar to the case of uV 2(x̂
P
2 ) + v2(ŷ2) ≥ uV 2(x̂

P
1 ) + v2(ŷ1)

in Proposition 2, P anticipates having sufficient leverage tomorrow to obtain x̂P
2 , even if the

efficient policy is implemented today. When instead GY has full support on R then (x̂P
d , ŷ

P
d )

must solve:

u′
P1(x) +

∫ ϵ(x,y)

ϵ(x,y)

u′
P2

(
x(x, y; ϵ)

)
u′
V 2

(
x(x, y; ϵ)

)u′
V 1(x)gY (ϵ)dϵ = 0 (11)

v′1(y) +

∫ ϵ(x,y)

ϵ(x,y)

u′
P2

(
x(x, y; ϵ)

)
u′
V 2

(
x(x, y; ϵ)

)v′2(y; ϵ)gY (ϵ)dϵ = 0. (12)

The first order conditions highlight that the results of this enriched model align with our

baseline findings that a necessary condition for inefficiency is that players expect changes

in the way they evaluate the common-value dimension. In a world with uncertainty, an

expectation of no change is equivalent to a case where the shock ϵ has a zero mean, and

both the distribution G and the v function are symmetric. Condition (12) shows that,

in this case, infection of the proposer’s preferences is avoided. Under the assumed sym-

metry conditions, ϵ(x, ŷ1) and ϵ(x, ŷ1) are centered around 0. In turn, this implies that∫ ϵ(x,ŷ1)

ϵ(x,ŷ1)

u′
P2

(
x(x,ŷ1;ϵ)

)
u′
V 2

(
x(x,ŷ1;ϵ)

)v′2(ŷ1; ϵ)gY (ϵ)dϵ = 0 under a symmetric v.

Instead, under a non-zero-mean shock, which captures our cases of substance interest such
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as a deteriorating crisis or decaying infrastructures, with some probability the proposer will

dynamically benefit from undershooting on the common-values dimension. As a consequence,

the possibility of infection emerges.

4.3 Long-run Outcomes

We now extend our analysis to study when bargaining over a dynamic policy problem and

an issue with increasing conflict leads to inefficiency over the long run. Bargaining proceeds

as before, but unfolds over a finite number of periods, t = 1, 2, ..., T , where throughout we

assume T is large.

Let u(x − x̂i
t) = −(x − x̂i

t)
2 and v(y − ŷt) = −(y − ŷt)

2. Additionally, we specify the

evolution of ideal points as follows: ŷt = γt and x̂P
t = −x̂V

t = tη, with γ > 0 and η > 0. Thus,

the common-values ideal point increases linearly in time, while the evolution of ideal points

on the conflict dimension may be concave or convex, and the evolution of these processes

are governed by γ and η.

We study subgame perfect equilibria and, given the finite horizon, analyze the model via

backwards induction. Notice that at period t any history leading to the same status quo

(xq
t , y

q
t ) yields the same continuation game. As such, we focus on strategy profiles where

policy proposals only depend on the time period (which also captures the players’ ideal

points) and the inherited status quo, and acceptance decisions only depend on these factors

plus the proposed policy. Of course, in the last period of the game the players always agree

on the efficient policy, y∗T = ŷT , and the ideological policy x∗
T = min

{
x̂P
T , x(x

q
T , y

q
T )
}
, where

x is defined as in the two-period model.

In this setting, the case of γ = 0 corresponds to no movement in the ideal common-values

policy, i.e., Condition (3) fails in each period. For the same logic as in the baseline model,

the absence of compounding costs of inefficiency implies there is no ideological infection. The

following propositions consider the case where γ > 0, i.e., the optimal common-values policy

changes over time. As we saw in the baseline model, compounding costs of inefficiency are
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necessary but not sufficient for ideological infection. Specifically, from Proposition 2, P ’s

preferences are not infected when the change in preferences on X is sufficiently slow relative

to the change in ŷ, such that P can obtain its ideal point in both periods. Similarly, the

evolution of preferences on the conflict dimension plays a crucial role for whether inefficiency

can be sustained in the long-run.

Proposition 7. If η < 1
2
then there exists t̂ < T such that the equilibrium policy outcome is

x∗
t = x̂P

t and y∗t = ŷt in every period t ≥ t̂. Furthermore, for γ sufficiently large t̂ = 1.

When η < 1
2
, in which case the evolution of preferences on the X dimension is concave,

the ideological conflict is increasing but eventually this increase is very small. Thus, in the

long run, the change in conflict on X is slow relative to changes on the common-values

dimension, where ŷt is increasing linearly. Proposition 7 then confirms our insights from

the baseline model. The players eventually reach a period where P is able to pass its static

ideal policy (x̂P
t , ŷt), and from there P has enough leverage to implement his ideal point

on the conflict dimension in every subsequent period. Thus, the parties always reach the

efficient common-values policy before the end date T . Furthermore, when the evolution of

the common-values dimension is sufficiently rapid the parties reach efficiency immediately.

Next, we consider the case of rapidly growing polarization. Similar to the baseline,

infection in any non-final period may be inevitable under rapid polarization.

Proposition 8. If η > 1
2
then y∗t ̸= ŷ1 in every period.

When η > 1
2
, so that the evolution of the conflict dimension is convex, the game eventually

reaches a state where implementing an efficient policy leaves the proposer with insufficient

leverage to obtain its optimal bundle in period T − 1. Anticipation of the eventual need

for leverage rolls back to the previous periods, and leads to policy outcomes always being

inefficient.
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5 Conclusion

Addressing policy problems often requires the agreement of multiple parties. However, bar-

gaining parties regularly have trouble reaching an efficient solution, even on issues where

they all agree that the situation will grow increasingly worse if there is a lack of action.

Our model shows that agreements on these common-values policy problems are vulnerable

to being distorted by disagreements on other issues precisely because they worsen over time.

Furthermore, if parties anticipate being more entrenched on the conflict dimension in the

future, then ideological infection of preferences over the common-values issue is inevitable.

Our analysis provides insight into a number of contexts where parties have failed to

adapt policy to deteriorating circumstances. Climate change negotiations between China

and the United States have been hampered by disagreements over Taiwan. In the United

States, political parties now appear polarized on nearly every issue, including those with

little ideological content. Additionally, despite the severe costs, Republicans and Democrats

have not always managed to avoid a government shutdown due to strategic incentives to gain

an advantage on ideological issues. Our paper uncovers the conditions under which these

issues of joint interest become infected by issues of conflict.
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Hazama, Yasushi and Şeref Iba. 2017. “Legislative agenda setting by a delegative democracy:

omnibus bills in the Turkish parliamentary system.” Turkish Studies 18(2):313–333.

Jackson, Matthew O and Boaz Moselle. 2002. “Coalition and party formation in a legislative

voting game.” Journal of Economic theory 103(1):49–87.

Keohane, Robert O. 1984. After hegemony. Vol. 54 Princeton: Princeton university press.

36



Krutz, Glen S. 2001. Hitching a ride: Omnibus legislating in the US Congress. Ohio State

University Press.

Layman, Geoffrey C, Thomas M Carsey and Juliana Menasce Horowitz. 2006. “Party po-

larization in American politics: Characteristics, causes, and consequences.” Annu. Rev.

Polit. Sci. 9:83–110.

Lee, Barton E. 2020. “Gridlock, leverage, and policy bundling.”.

Lee, Frances E. 2005. Untangling the sources of congressional partisanship: ideology, in-

terests, and opportunism. In Paper presented before the Midwest Political Science As-

sociation annual meeting, Palmer House Hilton, Chicago, Illinois. Referenced online at:

http://www. allacademic. com/meta/p85894 index. html.

Meßerschmidt, Klaus. 2021. Omnibus legislation in Germany: a widespread yet under-

studied lawmaking practice. In Comparative Multidisciplinary Perspectives on Omnibus

Legislation. Springer pp. 115–137.

Milgrom, Paul and Chris Shannon. 1994. “Monotone comparative statics.” Econometrica:

Journal of the Econometric Society pp. 157–180.

Penn, Elizabeth Maggie. 2009. “A model of farsighted voting.” American Journal of Political

Science 53(1):36–54.

Riboni, Alessandro and Francisco J Ruge-Murcia. 2008. “The dynamic (in) efficiency of

monetary policy by committee.” Journal of Money, Credit and Banking 40(5):1001–1032.

Rodrik, Dani. 2021. “Why does globalization fuel populism? Economics, culture, and the

rise of right-wing populism.” Annual review of economics 13(1):133–170.

Salam, Amna. 2020. “Breadth in Judicial Opinions.” Working Paper .

Stanway, David. 2021. “U.S. climate envoy Kerry urges China to keep politics out of global

warming.” Reuters .

37



URL: https://www.reuters.com/world/asia-pacific/china-holds-virtual-climate-meeting-

with-us-describes-environment-policy-oasis-2021-09-02/

Stokes, Donald E. 1963. “Spatial models of party competition.” American political science

review 57(2):368–377.

Tollison, Robert D and Thomas D Willett. 1979. “An economic theory of mutually advanta-

geous issue linkages in international negotiations.” International Organization 33(4):425–

449.
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A PROOFS

A.1 Proofs for Baseline Model

As mentioned in the paper, we can generalize the utility functions to allow their shapes to

change between periods. In proving the results for the baseline model, we now index u and

v by the time period: uit(x) = ut(x − x̂i
t) and vt(y) = vt(y − ŷt) and impose the following

assumption throughout:

Assumption 2.

u′
V 2(x) ≤ u′

V 1(x) and u′
P1(x) ≤ u′

P2(x) for all x ∈ [x̂V
2 , x̂

P
2 ]. (13)

Note that Assumption 2 is automatically satisfied in the baseline model. We discuss

further the role of Assumption 2 in Section A.2.

Recall that Uq = uV 1(x
q
1) + v1(y

q
1) + uV 2

(
x∗
2(x

q
1, y

q
1)
)
denote V ’s dynamic equilibrium

payoff from keeping the status quo. Thus, in the first period V accepts a proposal (x, y) if:

uV 1(x) + v1(y) + uV 2

(
x∗
2(x, y)

)
≥ Uq,

and rejects otherwise.

Facing this constraint from V , in the first period player P chooses (x, y) ∈ R2 to solve

the following maximization problem:

max
x,y

uP1(x) + v1(y) + uP2

(
x∗
2(x, y)

)
(14)

s.t. uV 1(x) + v1(y) + uV 2

(
x∗
2(x, y)

)
≥ Uq

Lemma A.1. Any (x, y) such that x(x, y) > x̂P
2 with y ̸= ŷ1 or x > x̂P

1 does not solve (14).
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Proof. For a contradiction, assume there exists (x, y) such that x(x, y) > x̂P
2 is optimal and

y ̸= ŷ1. Since x(x, y) is continuous in y there exists y′ closer to ŷ1 such that x(x, y′) > x̂P
2 .

Furthermore, because uV 1(x)+v1(y
′)+uV 2(x̂

P
2 ) > uV 1(x)+v1(y)+uV 2(x̂

P
2 ) the policy (x, y′)

must also satisfy V ’s acceptance constraint. Evaluating the objective function at (x, y′) and

(x, y) immediately yields uP1(x)+v1(y
′)+uP2(x̂

P
2 ) > uP1(x)+v1(y)+uP2(x̂

P
2 ), contradicting

that (x, y) solves problem (14). A similar argument shows that if x(x, y) > x̂P
2 and x > x̂P

1

then there exists some profitable deviation x′ ∈ (x̂P
1 , x), which improves the first-period

payoffs of P and V without changing second-period payoffs.

Lemma A.1 establishes an initial characterization of the optimal proposal when x(x, y) >

x̂P
2 . If instead (x, y) is such that x(x, y) ≤ x̂P

2 , then we can write the proposer’s problem

(14) as:

max
x,y

uP1(x) + v1(y) + uP2

(
x(x, y)

)
s.t. uV 1(x) + v1(y) + uV 2(x) + v2(y) ≥ Uq

uV 2(x) + v2(y) ≥ uV 2(x̂
P
2 )

System (15) yields the KKT conditions for this problem:16

u′
P1(x) +

∂x

∂x
u′
P2

(
x(x, y)

)
+ λ1

[
u′
V 1(x) + u′

V 2(x)
]
+ λ2u

′
V 2(x) = 0

v′1(y) +
∂x

∂y
u′
P2

(
x(x, y)

)
+ λ1

[
v′1(y) + v′2(y)

]
+ λ2v

′
2(y) = 0

λ1

[
uV 1(x) + v1(y) + uV 2

(
x(x, y)

)
− Uq

]
= 0

λ2

[
uV 2(x) + v2(y)− uV 2(x̂

P
2 )
]
= 0

λ1, λ2 ≥ 0

(15a)

(15b)

(15c)

(15d)

(15e)

16It is straightforward to show that if the constraint qualification fails at some point (x, y) then it must
be that x ∈ [x̂V

2 , x̂
V
α ) and y ∈ (ŷVα , ŷ2]. However, clearly this cannot be optimal as a deviation to x = x̂V

d and
y = ŷVd is always accepted by V and improves P ’s dynamic payoff. Thus, the KKT conditions will hold at
any solution.
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Lemma A.2 establishes that P never proposes an (x, y) that allows it to pass x̂P
2 in the

second period. Thus, it simplifies our analysis of System 15 by ruling out corner solutions.

Lemma A.2. Any (x, y) such that x(x, y) = x̂P
2 never solves (14).

Proof. Suppose there exists (x, y) that solves (14) such that x(x, y) = x̂P
2 . Thus, (x, y)

must solve system (15). In particular, consider condition (15b). Letting x(x, y) = x̂P
2 , then

u′
P2

(
x(x, y)

)
= 0 and this condition becomes:

v′1(y) + λ1

[
v′1(y) + v′2(y)

]
+ λ2v

′
2(y) = 0. (16)

First, notice that if such an (x, y) is optimal then we must have y ≤ ŷ1. If y ∈ (ŷ1, ŷ2] then

P could deviate to y = ŷ1, which would maintain x∗
2(x, y) = x̂P

2 and improve the first-period

payoff of both players, contradicting that (x, y) solves problem (14).

Second, if y < ŷ1 then the LHS of (16) is strictly positive by ŷ1 ≤ ŷ2, contradicting that

(16) holds. Therefore, if (x, y) is such that x(x, y) = x̂P
2 and solves problem (14) then we

must have y = ŷ1.

To finish the proof we now show that y = ŷ1 also leads to a contradiction. If y = ŷ1 then

(16) reduces to:

(
λ1 + λ2

)
v′2(ŷ1) = 0. (17)

We consider two cases depending on v′2(ŷ1). First, if v
′
2(ŷ1) > 0 then for (16) to hold requires

λ1 = λ2 = 0, but λ2 = 0 contradicts that x(x, y) = x̂P
2 . Second, if v′2(ŷ1) = 0 then it must

be that ŷ1 = ŷ2. Thus, the policy will be stuck at the first-period proposal x in the second

period, which implies that x = x̂P
2 . In this case, for condition (15a) to hold requires:

u′
P1(x̂

P
2 ) + λ1

[
u′
V 1(x̂

P
2 ) + u′

V 2(x̂
P
2 )
]
+ λ2u

′
V 2(x̂

P
2 ) = 0. (18)
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Because x̂P
2 ≥ x̂P

1 the LHS of (18) is strictly negative by assumption that P is always further

to the right than V , which contradicts that (x, y) solves (14) and completes the argument.

Lemma 2. On the Y dimension ŷPd ≤ ŷ1 ≤ ŷVd . On the X dimension x̂V
d ≤ x̂V

1 and x̂P
1 ≤ x̂P

d .

Proof. First, we prove the result for the proposer’s dynamic ideal point. If P chooses (x, y)

such that x∗
2(x, y) = x(x, y) then the necessary condition (x̂P

d , ŷ
P
d ) solves is:

u′
P1(x) +

∂x

∂x
u′
P2

(
x(x, y)

)
= 0 (19)

v′1(y) +
∂x

∂y
u′
P2

(
x(x, y)

)
= 0. (20)

Recall that x(x, y) solves (2), the implicit function theorem then yields:

∂x

∂x
=

u′
V 2(x)

u′
V 2

(
x(x, y)

) , and
∂x

∂y
=

v′2(y)

u′
V 2

(
x(x, y)

) .
As such, the LHS of (19) can be written as: u′

P1(x) +
u′
V 2(x)

u′
V 2(x)

u′
P2

(
x(x, y)

)
, note we will

sometimes suppress dependence of x on the first-period policy (x, y). Furthermore, in equi-

librium we must have x̂V
2 < x ≤ x(x, y) ≤ x̂P

2 , which implies
u′
V 2(x)

u′
V 2(x)

> 0 and u′
P2

(
x(x, y)

)
≥ 0.

Therefore, x > x̂P
1 is necessary for (19) to hold. Next consider equation (20). After substi-

tuting for ∂x
∂y
, (20) becomes:

v′1(y) +
u′
P2

(
x(x, y)

)
u′
V 2

(
x(x, y)

)v′2(y) = 0.

Because x(x, y) ∈ (x̂V
2 , x̂

P
2 ] we have

u′
P2(x)

u′
V 2(x)

≤ 0. Thus, if y ∈ (ŷ1, ŷ2] then LHS of (20) is

strictly negative. Clearly y > ŷ2 is never optimal. Hence, a necessary condition for (20) to

hold is that y ≤ ŷ1.

Suppose instead that (x̂P
d , ŷ

P
d ) is such that x∗

2(x̂
P
d , ŷ

P
d ) = x̂P

2 . In this case, if x∗
2(x̂

P
d , ŷ

P
d ) =

x̂P
2 is optimal absent the veto player’s first-period acceptance constraint, then clearly we

must have (x̂P
d , ŷ

P
d ) = (x̂P

1 , ŷ1). Thus, it is always the case that x̂P
d ≥ x̂P

1 and ŷPd ≤ ŷ1.
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Now consider the veto player. V ’s dynamic ideal point (x̂V
d , ŷ

V
d ) solves:

max
x,y

uV 1(x) + v1(y) + uV 2

(
x∗
2(x, y)

)
.

If x∗
2(x, y) = x(x, y) then (x̂V

d , ŷ
V
d ) must solve:

u′
V 1(x) + u′

V 2(x) = 0

v′1(y) + v′2(y) = 0.

Thus, x̂V
d ≤ x̂V

1 and ŷVd ≥ ŷ1, as required. If instead it is optimal for V to choose (x̂V
d , ŷ

V
d )

such that x∗
2(x, y) = x̂P

2 , then clearly it must be that x̂V
d = x̂V

1 and ŷVd = ŷ1, completing the

argument.

Proposition 1. If v′1(y) ≥ v′2(y) for all y ≤ ŷ1, then there is no ideological infection,

ŷPd = ŷVd = ŷ1. Furthermore, the policy outcome is efficient, y∗1 = ŷ1.

Proof.

Part 1. To start, we prove part 1, that there is no ideological infection. For a contradiction,

assume v′1(y) ≥ v′2(y) for all y ≤ ŷ1, but ŷ
i
d ̸= ŷ1 for some i ∈ {V, P}.

First, consider player P and suppose ŷPd < ŷ1. Lemma A.1 implies that if yPd ̸= ŷ1 then

x∗(x, y) = x(x, y). Thus, from our analysis in Lemma 2, it is necessary that P ’s dynamic

ideal point (xP
d , y

P
d ) solves:

u′
P1(x) +

u′
V 2(x)

u′
V 2(x)

u′
P2(x(x, y)) = 0 (21)

v′1(y) +
v′2(y)

u′
V 2(x)

u′
P2(x(x, y)) = 0. (22)

Using that y ̸= ŷ1, we can combine conditions (21) and (22) and rearrange to obtain that
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(x̂P
d , ŷ

P
d ) must satisfy:

v′2(y)

v′1(y)
=

u′
V 2(x)

u′
P1(x)

. (23)

From the proof of Lemma 2, if (x, y) is such that x∗
2(x, y) = x(x, y) then x̂P

d > x̂P
1 . Recall

that uP1(x) is a translation of uV 1(x) and ui1 is concave, thus, u′
V 1(x) < u′

P1(x) < 0 for

x > x̂P
1 . Furthermore, by Assumption 2, u′

V 2(x) ≤ u′
V 1(x). Hence, u′

V 2(x) < u′
P1(x) < 0.

However, this implies
u′
V 2(x)

u′
P1(x)

> 1 and by assumption
v′2(y)

v′1(y)
≤ 1. Therefore,

u′
V 2(x)

u′
P1(x)

>
v′2(y)

v′1(y)
and

(23) cannot hold, contradicting that ŷPd ̸= ŷ1.

Second, we show that L’s preferences are also not infected. Suppose not, so ŷVd > ŷ1. A

similar argument as for P in Lemma A.1 yields that if ŷVd ̸= ŷ1 then x(x̂V
d , ŷ

V
d ) ≤ x̂P

2 . Thus,

consider (x, y) such that x∗
2(x, y) = x(x, y). In this case, (x̂V

d , ŷ
V
d ) solves:

u′
V 1(x) + u′

V 2(x) = 0 (24)

v′1(y) + v′2(y) = 0. (25)

The assumption that
v′2(y)

v′1(y)
≤ 1 for all y ≤ ŷ1 implies that ŷ1 = ŷ2, otherwise the assumption

would fail at y = ŷ1 < ŷ2. Therefore, if y > ŷ1 = ŷ2 then v′1(y) < 0 and v′2(y) < 0, which

violates (25).

Part 2. Now we show that the policy outcome must also be efficient. To derive a contra-

diction, suppose that v′1(y) ≥ v′2(y) for all y ≤ ŷ1 but y∗1 ̸= ŷ1. By Lemma A.1 if y∗1 ̸= ŷ1

then x(x∗
1, y

∗
1) ≤ x̂P

2 . Thus, the optimal policy proposal must solve system (15). To prove

the result we now consider different cases depending on which constraints are binding.

Case 1: To start, assume λ2 > 0, this implies that x(x, y) = x̂P
2 , which cannot be optimal

by Lemma A.2.

Case 2: Second, assume λ1 = 0 and λ2 = 0. By λ1 = 0 the proposer’s unconstrained optimal

policy is accepted by V . Thus, by Proposition 1 y∗1 = ŷPd = ŷ1, as required.
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Case 3: Finally, consider the case where λ1 > 0 and λ2 = 0. Solving (15a) and (15b) for λ1

implies that (x, y) must solve:

v′1(y) +
u′
P2(x)

u′
V 2(x)

v′2(y)

v′1(y) + v′2(y)
=

u′
P1(x) +

u′
P2(x)

u′
V 2(x)

u′
V 2(x)

u′
V 1(x) + u′

V 2(x)
. (26)

Rearranging condition (26), we have that any optimal (x, y) must solve:

v′1(y)u
′
P1(x)− v′1(y)u

′
V 1(x) + v′2(y)u

′
P1(x)− v′1(y)u

′
V 2(x)

− u′
P2(x)

u′
V 2(x)

(
v′2(y)u

′
V 1(x)− v′1(y)u

′
V 2(x)

)
= 0. (27)

To obtain a contradiction, we show that if y ̸= ŷ1 then the LHS of (27) is strictly positive.

Suppose y < ŷ1 = ŷ2, recalling that if v′1(y) ≥ v′2(y) for all y ≤ ŷ1 then ŷ1 = ŷ2 (an analogous

argument proves the case y > ŷ1 = ŷ2). Thus, v
′
1(y) > 0 and v′2(y) > 0.

First, we show that the last term in the LHS of (27) is always positive. To see this, note

that
u′
P2(x)

u′
V 2(x)

< 0, by x(x, y) ∈ (x̂V
2 , x̂

P
2 ]. Thus, a sufficient condition for the last term on the

LHS of (27) to be positive is that:

v′2(y)u
′
V 1(x)− v′1(y)u

′
V 2(x) > 0. (28)

Clearly, in equilibrium, x ≥ x̂V
2 . Thus, if x < x̂V

1 then v′2(y)u
′
V 1(x) > 0 and (28) holds.

Instead, suppose that x ≥ x̂V
1 . By Assumption 2 u′

V 2(x) < u′
V 1(x) < 0. Additionally,

by assumption, v′1(y) ≥ v′2(y) > 0. As such, v′2(y)u
′
V 1(x) > v′1(y)u

′
V 2(x), and (28) holds.

Therefore, −u′
P2(x)

u′
V 2(x)

(
v′2(y)u

′
V 1(x)− v′1(y)u

′
V 2(x)

)
≥ 0, as claimed.

Second, consider the term: v′1(y)u
′
P1(x)− v′1(y)u

′
V 1(x). By y < ŷ1, this term is positive if

and only if u′
P1(x) ≥ u′

V 1(x), which holds by concavity of u1(x− x̂i) and x̂V
1 < x̂P

1 .

Finally, to complete the argument that the LHS of (27) is strictly positive, we show that
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v′2(y)u
′
P1(x)− v′1(y)u

′
V 2(x) > 0. This holds if and only if:

v′2(y)u
′
P1(x) > v′1(y)u

′
V 2(x). (29)

By our previous argument showing that the LHS of (28) is positive, we have v′2(y)u
′
V 1(x) >

v′1(y)u
′
V 2(x). Thus, a sufficient condition for (29) to hold is that v′2(y)u

′
P1(x) ≥ v′2(y)u

′
V 1(x),

which again follows from concavity of u1 and x̂V
1 < x̂P

1 . Therefore, the LHS of (27) is strictly

positive, contradicting that y < ŷ1 is optimal.

Proposition 2.

1. V ’s preferences are infected if and only if uV 2(x̂
P
2 ) < uV ; and

2. P ’s preferences are infected if and only if uV 2(x̂
P
2 ) < uP .

Furthermore, uP < uV .

Proof. To start, we prove part 1 of the proposition. Define uV as:

uV ≡ uV 1(x̂
V
α ) + v1(ŷ

V
α ) + uV 2(x̂

V
α ) + v2(ŷ

V
α ),

where (x̂V
α , ŷ

V
α ) solves:

u′
V 1(x) + u′

V 2(x) = 0 (30)

v′1(y) + v′2(y) = 0.

Part 1. We begin by showing that if uV 2(x̂
P
2 ) < uV then V ’s preferences are infected. In

this case, uV 2(x̂
P
2 ) < uV < uV 2(x̂

V
α ) + v2(ŷ

V
α ) which implies x(x̂V

α , ŷ
V
α ) < x̂P

2 . Therefore,

V ’s dynamic payoff from (x̂V
α , ŷ

V
α ) is uV . By construction (x̂V

α , ŷ
V
α ) maximizes uV 1(x) +

v1(y) + uV 2(x) + v2(y) and hence maximizes V ’s dynamic payoff among all policies (x, y)

such x∗
2(x, y) < x(x, y). Finally, the best possible dynamic payoff to V from any policy
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(x, y) such that x∗
2(x, y) = x̂P

2 is uV 2(x̂
P
2 ) which is strictly less than the dynamic payoff from

(x̂V
α , ŷ

V
α ) by assumption that uV 2(x̂

P
2 ) < uV . From inspection of (30), ŷVα > ŷ1, and V ’s

preferences are infected.

Next, we prove that if uV 2(x̂
P
2 ) ≥ uV then V ’s preferences are not infected. Because

(x̂V
α , ŷ

V
α ) solves maxx,y uV 1(x)+ v1(y)+uV 2(x)+ v2(y) we have that uV ≥ uV 1(x̂

V
1 )+ v1(ŷ1)+

uV 2(x̂
V
1 ) + v2(ŷ1) = uV 2(x̂

V
1 ) + v2(ŷ1). Therefore, the assumption uV 2(x̂

P
2 ) ≥ uV also yields

that uV 2(x̂
P
2 ) ≥ uV 2(x̂

V
1 ) + v2(ŷ1). Thus, the dynamic payoff to V from (x̂V

1 , ŷ1) is uV 2(x̂
P
2 ),

which is the greatest possible payoff from any first-period policy such that x∗
2(x, y) = x̂P

2 .

Instead the best policy for V such that x(x, y) ≤ x̂P
2 solves:

max
x,y

uV 1(x) + v1(y) + uV 2(x) + v2(y)

s.t. uV 2(x) + v2(y) ≥ uV 2(x̂
P
2 ).

Recall that (xV
α , y

V
α ) solves this problem when the constraint does not bind, however,

uV 2(x̂
P
2 ) ≥ uV and hence the constraint must be binding at the solution. Therefore the

best policy (x, y) for V such that x(x, y) ≤ x̂P
2 must set x(x, y) = x̂P

2 , and clearly uV 1(x) +

v1(y) + uV 2(x̂
P
2 ) < uV 1(x̂

V
1 ) + v1(ŷ1) + uV 2(x̂

P
2 ). Consequently, (x̂V

d , ŷ
V
d ) = (x̂V

1 , ŷ1) and V ’s

preferences are not infected.

Part 2. Now we prove part 2 of the proposition. Recall that uP = uV 2(x̂
P
1 ) + v2(ŷ1).

We first show that if uV 2(x̂
P
2 ) ≥ uP then P ’s preferences are not infected. By definition

of uP , if P chooses (x̂P
1 , ŷ1) in the first period it can implement (x̂P

2 , ŷ2) in the second. As

this is the unique sequence of policies that yields P its first-best payoff, P ’s preferences are

not infected.

Next, we show that if uV 2(x̂
P
2 ) < uP then P ’s preferences are infected. To show a

contradiction, assume that ŷPd = ŷ1. We break the argument into two parts. First, let

x(x, ŷPd ) = x̂P
2 , then from System (15) for (x, y) to satisfy the KKT conditions it must be
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that x < x̂P
1 . However, this implies uV 2(x) + v2(ŷ1) ≤ uV 2(x̂

P
2 ) and uV 2(x) + v2(ŷ1) >

uV 2(x̂
P
1 ) + v2(ŷ1) = uP , which contradicts that uV 2(x̂

P
2 ) < uP .

Second, let x(x̂P
d , ŷ

P
d ) < x̂P

2 . By System (15) x̂P
d must solve:

u′
P2(x

(
x, ŷ1)

)
u′
V 2(x

(
x, ŷ1)

)v′2(ŷ1) = 0. (31)

However, x(x, ŷ1) ∈ (x̂V
2 , x̂

P
2 ), thus

u′
P2(x(x,ŷ1))

u′
V 2(x(x,ŷ1))

< 0. Additionally, by Assumption 1 v′2(ŷ1) > 0.

Therefore, the LHS of (31) is strictly less than 0, which contradicts that ŷP2 = ŷ1.

Part 3. To conclude the proof we now demonstrate that uP < uV . We again note that

(x̂V
α , ŷ

V
α ) is the unique maximizer of uV 1(x)+v1(y)+uV 2(x)+v2(y) and thus uP = uV 1(x̂1)+

v1(ŷ1) + uV 2(x̂
P
1 ) + v2(ŷ1) < uV 1(x̂1) + v1(ŷ1) + uV 2(x̂

V
1 ) + v2(ŷ1) < uV 1(x̂

V
α ) + v1(ŷ

V
α ) +

uV 2(x̂
V
α ) + v2(ŷ

V
α ) = uV .

Proposition 3.

1. Assume V ’s preferences are infected but P ’s preferences are not. If Uq ≤ uV 1(x̂
P
1 ) +

uV 2(x̂
P
2 ) then the equilibrium policy is efficient. Otherwise, the equilibrium policy is

inefficient for almost all (Uq, x̂
V
1 ).

2. If both players’ preferences are infected then the equilibrium policy is inefficient for

almost all (Uq, x̂
V
1 ).

Proof. We first prove the second part of the result. Assume that the preferences of both

players are infected, thus, uP > uV 2(x̂
P
2 ) by Proposition 2.

By Lemmas A.1 and A.2 if the equilibrium policy is such that x∗
2(x

∗
1, y

∗
1) = x̂P

2 then

x∗
1 < x̂P

1 and y∗1 = ŷ1. However, by x∗
1 < x̂P

1 we have uV 2(x
∗
1)+v2(ŷ1) > uV 2(x̂1)+v2(ŷ1) = uP .

Thus, the assumption uP > uV 2(x̂
P
2 ) implies uV 2(x

∗
1) + v2(ŷ1) > uV 2(x̂

P
2 ), which contradicts

that x(x∗
1, ŷ1) ≥ x̂P

2 . Therefore, the equilibrium policy (x∗
1, y

∗
1) must be such that x(x∗

1, y
∗
1) <
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x̂P
2 and thus solve System (15). From (15) if y = ŷ1 then x must solve:

uV 1(x) + uV 2

(
x(x, ŷ1)

)
= Uq (32)

The LHS of (32) is strictly decreasing in x for x > x̂V
1 , thus, there must be a unique x′ > x̂V

1

that solves this equality.

Solving for λ1 from (15a) and (15b) and rearranging we have that the equilibrium x must

also solve:

u′
P2(x(x, ŷ1))

u′
V 2(x(x, ŷ1))

− u′
P1(x)

u′
V 1(x)

= 0. (33)

Using this condition, define f : R2 → R as f(x, x̂V
1 ) =

u′
P2(x(x,ŷ1))

u′
V 2(x(x,ŷ1))

− u′
P1(x)

u′
V 1(x)

. Then

Df(x, x̂V
1 ) =(

∂x

∂x

u′′
P2(x)u

′
V 2(x)− u′

P2(x)u
′′
V 2(x)

u′
V 2(x)

2
− u′

V 1(x)u
′′
P1(x)− u′

P1(x)u
′′
V 1(x)

u′
V 1(x)

2
,−u′

P1(x)u
′′
V 1(x)

[u′
V 1(x)]

2

)
,

Notice that if x = x̂P
1 then (33) cannot hold. Moreover, −u′

P1(x)u
′′
V 1(x)

[u′
V 1(x)]

2 = 0 if and only if x =

x̂P
1 . Therefore, if (x, x̂V

1 ) is such that f(x, x̂V
1 ) = 0 then Df(x, x̂V

1 ) has rank 1 = min{1, 2}.

Thus, 0 is a regular value of f and by the Transversality Theorem (De la Fuente, 2000,

Theorem 2.5) the set of x that solve (33) is measure 0 for almost all x̂V 1. Fix such a x̂V 1.

The unique solution to (32) is strictly increasing in Uq, while solutions to (33) do not change

in Uq, since we can change Uq without changing anything in (33) by changing the initial

status quo policy. Thus for almost all (Uq, x̂V 1) the solution to (32) does not coincide with

any solutions to (33).

Next, we prove the first part of the proposition. Suppose only V ’s preferences are infected,

thus, uV > uV 2(x̂
P
2 ) > uP by Proposition 2. For Uq ≤ uV 1(x̂

P
1 ) + uV 2(x̂

P
2 ) clearly (x, y) =

(x̂P
1 , ŷ1) is optimal, as P passes its ideal point in each period. Next, assume Uq > uV 1(x̂

P
1 ) +

uV 2(x̂
P
2 ). Thus, V rejects (x̂P

1 , ŷ1), which implies P chooses (x, y) such that x∗
2(x, y) = x(x, y)
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and λ1 > 0. For a contradiction suppose that y1 = ŷ1. By Uq > uV 1(x̂
P
1 ) + uV 2(x̂

P
2 ) the veto

player must also reject any policy (x1, ŷ1) where x1 > x̂P
1 . Thus, x1 < x̂P

1 . Solving for λ1

and rearranging x must also solve

u′
P2(x(x, ŷ1))

u′
V 2(x(x, ŷ1))

− u′
P1(x)

u′
V 1(x)

= 0, (34)

and the same argument as above yields that the equilibrium policy can be efficient for only

a measure zero set of parameters (Uq, x̂
V
1 ).

Proposition 4. Assume uV 2(x̂
P
2 ) < uP . There exists an open interval (U q, U q), such that,

if Uq ∈ (U q, U q) then x∗
1 < x̂P

1 and y∗1 < ŷ1.

Proof. Since uV 2(x̂
P
2 ) < uP the optimal proposal must solve system (15), and the implicit

function theorem delivers that we can view solutions (x∗
1, y

∗
1) as continuous functions of Uq.

For Uq sufficiently large we have x∗
1(Uq) < x̂P

1 and y∗1(Uq) > ŷ1, and for Uq sufficiently small

we have x∗
1(Uq) > x̂P

1 and y∗1(Uq) < ŷ1, because the equilibrium policy must be close to V ’s

and P ’s dynamic ideal points, respectively. Thus, there must exist some U ′
q such that y = ŷ1.

Specifically, let U ′
q be the first such value of Uq where y∗1 = ŷ1.

First, we show that U ′
q > uV 1(x̂

P
1 ) + v(ŷ1) + uV 2

(
x∗
2(x̂

P
1 , ŷ1)

)
. Suppose not, so that

U ′
q ≤ uV 1(x̂

P
1 ) + v(ŷ1) + uV 2

(
x∗
2(x̂

P
1 , ŷ1)

)
. The veto constraint must bind, otherwise P could

choose its unconstrained optimal which sets y < ŷ1. Thus, if y = ŷ1 then, from our earlier

analysis, the equilibrium proposal must satisfy:

u′
P2(x(x, ŷ1))

u′
V 2(x(x, ŷ1))

=
u′
P1(x)

u′
V 1(x)

. (35)

Furthermore, because U ′
q ≤ uV 1(x̂

P
1 )+v(ŷ1)+uV 2

(
x∗
2(x̂

P
1 , ŷ1)

)
we must have x > x̂P

1 , otherwise

if x < x̂P
1 then P could profitably deviate to x = x̂P

1 , which the veto player would accept.

Thus, if y = ŷ1 then x > x̂P
1 . If x > x̂P

1 then
u′
P1(x)

u′
V 1(x)

> 0. However,
u′
P2(x(x,ŷ1))

u′
V 2(x(x,ŷ1))

< 0,

contradicting that (35) holds.
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Therefore, there is some U ′
q > uV 1(x̂

P
1 ) + v(ŷ1) + uV 2(x

∗
2(x̂

P
1 , ŷ1)) such that y < ŷ1 for

Uq < U ′
q. Furthermore, for any Uq ∈

(
uV 1(x̂

P
1 ) + v(ŷ1) + uV 2

(
x∗
2(x̂

P
1 , ŷ1)

)
, U ′

q

)
if y < ŷ1 and

x > x̂P
1 then it is profitable for V to reject because U ′

q > uV 1(x̂
P
1 ) + v(ŷ1) + uV 2

(
x∗
2(x̂

P
1 , ŷ1)

)
.

Thus, x∗
1 < x̂P

1 and y∗1 < ŷ1 for
(
uV 1(x̂

P
1 ) + v(ŷ1) + uV 2

(
x∗
2(x̂

P
1 , ŷ1)

)
, U ′

q

)
, as claimed.

A.2 Changing Shapes of the Utility Functions

We now discuss the role of Assumption 2 for our results. Recall that Assumption 2 requires:

u′
V 2(x) ≤ u′

V 1(x) and u′
P1(x) ≤ u′

P2(x) for all x ∈ [x̂V
2 , x̂

P
2 ]. (36)

Assumption 2 states that for each player the marginal cost of moving policy away from

its ideal point on X becomes greater over time. This assumption is consistent with our

consideration of X as a dimension of disagreement on which conflict is increasing is over

time. Thus, under this definition of increasing ideological conflict the central result from

our baseline model continues to hold. Even though both players expect their opponent to

become more entrenched on the ideological dimension in the future, and thus less willing

to compromise, compounding costs on the common-values dimension generate incentives to

delay coming to an efficient agreement.

If the above condition fails, then the utility function over the X dimension can become

“flatter” over time despite the ideal points pulling further apart. In this case, our model

delivers a less surprising result. If players become less sensitive over time to changes on the

conflict dimension, and thus more willing to compromise tomorrow, this naturally creates

incentives to delay agreeing to an efficient policy today, even absent compounding costs of

inefficiency. That is, even if preferences on the Y dimension do not change, the proposer

may want to undershoot the efficient policy to preserve leverage because the veto player

becomes close to indifferent over policies on the X dimension in the second period. As such,

any amount of inefficiency is more valuable and P ’s preferences are infected. Here, the key
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condition for P ’s preferences to not be infected is that, for all x > x̂P
1 and y ≤ ŷ2:

u′
V 2(x)

u′
P1(x)

≥ v′2(y)

v′1(y)
. (37)

Under the increasing conflict condition,
u′
V 2(x)

u′
P1(x)

> 1 for all x > x̂P
1 , thus, v

′
2(y) ≤ v′1(y) is

sufficient for (37) to hold. If the increasing conflict condition fails, then it is possible that

u′
V 2(x)

u′
P1(x)

< 1 for x > x̂P
1 . Consequently, (37) can fail and infection of the proposer’s preferences

can occur even if, for example, v1(y) = v2(y). However, Condition (37) still maintains a

similar flavor as the original result, whereby infection of the proposer’s preferences is avoided

as long as the marginal cost of inefficiency is relatively smaller tomorrow than today. We

also note that the same logic and discussion applies if we relax concavity of u and only

require u to be quasi-concave over X: pulling apart the players’ ideal points can make them

less sensitive to changes over the relevant policy region (even if the shape of u does not

change in this case). Overall, given our substantive interest in situations where the actors

are becoming more antagonistic and policy problems worsen over time, we have focused our

analysis on the case where the uts are concave and condition (36) holds.

Finally, now that we allow the shape of the utility functions to change over time we

point out that Condition (3) does not consider the case where ŷ1 = ŷ2 but v′2(y) > v′1(y) for

y < ŷ1. This streamlines the presentation of our results, but it is not crucial for infection

of P ’s preferences.17 That is, a similar logic of compounding can lead to infection of P ’s

preferences if the ideal point on Y remains the same but the marginal cost of inaction

increases over time (except at ŷ1 = ŷ2), e.g., v2(y) = θv1(y) with θ > 1. In this case,

V ’s preferences are not infected, as it is not possible for y to overshoot ŷ1. However, P is

still incentivized to undershoot ŷ1 because the compounding makes V more willing to yield

concessions in period 2.

For example, consider the following numerical specification: ut(x − x̂i
t) = −(x − x̂i

t)
2,

x̂P
1 = −x̂V

1 = 1, x̂P
2 = −x̂V

2 = 7, v1(y) = −1
4
(y − 1)2, and v2(y) = −(y − 1)2. If the

17Furthermore, we note that Condition (3) allows the change in ŷ1 to be arbitrarily small.
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efficient policy is implemented in the first period, y = ŷ = 1, then the optimal x for P is the

midpoint
x̂P
1 +x̂P

2

2
= 4. P ’s dynamic payoff in this case is −(4− 1)2− (4− 7)2 = −18. Instead,

consider the policy x = 3.5 and y = −2.4. In the second period, the veto player is willing to

accept x(3.5,−2.4) ≈ 4.03. Then P ’s dynamic payoff from the inefficient policy (3.5,−2.4)

is −(3.5− 1)2 − 1
4
(−2.4− 1)2 − (4.03− 7)2 ≈ −17.93 > −18.

A.3 Proofs for Turnover Extension

With turnover, P ’s problem in the first period can be written as:

max
x,y

uP1(x) + v1(y) + ρuP2

(
x∗
P (x, y)

)
+ (1− ρ)uP2

(
x∗
V (x, y)

)
(38)

s.t. uV 1(x) + v1(y) + ρuV 2

(
x∗
P (x, y)

)
+ (1− ρ)uV 2

(
x∗
V (x, y)

)
≥ Uq

Proposition 5. If uV 2(x̂
P
2 ) < uV 2(x̂

P
1 ) + v2(ŷ1) or uP2(x̂

V
2 ) < uP2(x̂

V
1 ) + v2(ŷ1), then both

players’ preferences are infected for almost all values of ρ ∈ (0, 1).

Proof. We consider the case of player P . A similar argument extends the result to player V .

The argument proceeds as follows. First, we show that if (x̂P
d , ŷ

P
d ) is such that x∗

P (x̂
P
d , ŷ

P
d ) =

xV (x̂
P
d , ŷ

P
d ) or x

∗
V (x̂

P
d , ŷ

P
d ) = x(x̂P

d , ŷ
P
d ) then it must be that ŷPd ̸= ŷ1 for almost all values of

ρ. Second, we show that if x∗
P (x̂

P
d , ŷ

P
d ) = x̂P

2 and x∗
V (x̂

P
d , ŷ

P
d ) = x̂V

2 then the only possible

solution for player P ’s preferences to not be infected requires x∗
V (x̂

P
d , ŷ

P
d ) = (x̂P

1 , ŷ1), however,

this solution is not feasible by uV 2(x̂
P
2 ) < uV 2(x̂

P
1 ) + v2(ŷ1) or uP2(x̂

V
2 ) < uP2(x̂

V
1 ) + v2(ŷ1).

Step 1. We argue that if x∗
P (x̂

P
d , ŷ

P
d ) = xV (x̂

P
d , ŷ

P
d ) or x

∗
V (x̂

P
d , ŷ

P
d ) = x(x̂P

d , ŷ
P
d ) then ŷPd ̸= ŷ1

for almost all values of ρ. We break the argument into three parts, depending on if (x, y) is

such that one of the players can pass x̂i
2 in the second period.

Part 1. Consider (x, y) such that uV 2(x̂
P
2 ) ≤ uV 2(x) + v2(y) and uP2(x̂

V
2 ) ≤ uP2(x) + v2(y).
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Then if the proposer’s dynamic ideal point satisfies these inequalities it must solve:

max
(x,y)

uP1(x) + v1(y) + ρuP2

(
xV (x, y)

)
+ (1− ρ)

(
uP2(x) + v2(y)

)
.

Letting a = −x and b = −y we can rewrite P ’s problem as:

max
(a,b)

uP1(−a) + v1(−b) + ρuP2

(
xV 2(a, b)

)
+ (1− ρ)

(
uP2(−a) + v2(−b)

)
.

Taking cross-partials of the objective function yields:

∂2

∂a∂b
= ρ
(∂2xV

∂a∂b
u′
P2

(
xV 2(−a,−b)

)
+

∂xV

∂a
· ∂xV

∂b
u′′
P2

(
xV (−a,−b)

))
∂2

∂a∂ρ
=

∂xV

∂a
u′
P2

(
xP (−a,−b)

)
+ u′

P2(−a)

∂2

∂b∂ρ
=

∂xV

∂b
u′
P2

(
xV (−a,−b)

)
+ v′2(−b)

We have ∂2xV 2

∂a∂b
> 0, ∂xV 2

∂a
< 0, and ∂xV 2

∂b
> 0, which yields, ∂2

∂a∂b
> 0 and ∂2

∂b∂ρ
> 0. Finally,

u′
P2(x) < u′

P2(x) = u′
P2(−a) and ∂xV 2

∂a
∈ (−1, 0), thus ∂2

∂a∂ρ
> 0. Then the usual results on

monotone comparative statics (Milgrom and Shannon, 1994) deliver that y∗d is monotonic in

ρ, and thus y∗d = ŷ1 for at most one value of ρ.

Part 2. Consider (x, y) such that uV 2(x̂
P
2 ) ≥ uV 2(x) + v2(y) and uP2(x̂

V
2 ) ≤ uP2(x) + v2(y).

Then if the proposer’s dynamic ideal point satisfies these inequalities it must solve:

max
(x,y)

uP1(x) + v1(y) + ρuP2

(
x̂P
2

)
+ (1− ρ)

(
uP2(x) + v2(y)

)
.

Thus, such a (x̂P
d , ŷ

P
d ) must solve:

u′
P1(x) + (1− ρ)u′

P2(x) = 0

v′1(y) + (1− ρ)v′2(y) = 0,
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which clearly cannot be satisfied if y = ŷ1 when v′2(ŷ1) > v′1(ŷ1) = 0 and ρ ∈ (0, 1).

Part 3. Consider (x, y) such that uV 2(x̂
P
2 ) ≤ uV 2(x) + v2(y) and uP2(x̂

V
2 ) ≥ uP2(x) + v2(y).

Then if the proposer’s dynamic ideal point satisfies these inequalities it must solve:

max
(x,y)

uP1(x) + v1(y) + ρuP2

(
xV (x, y)

)
+ (1− ρ)uP2(x̂

V
2 ).

Thus, such a (x̂P
d , ŷ

P
d ) needs to solve:

u′
P1(x) + ρ

u′
V 2(x)

u′
V 2

(
xV (x, y)

)u′
P2

(
xV (x, y)

)
= 0

v′1(y) + ρ
v′2(y)

u′
V 2

(
xV (x, y)

)u′
P2

(
xV (x, y)

)
= 0.

Because
u′
P2

(
xV (x,y)

)
u′
V 2

(
xV (x,y)

) < 0 and ρ ̸= 0, again it is clear that the second equality cannot be

satisfied when y = ŷ1 if v′2(ŷ1) > v′1(ŷ1) = 0.

Step 2. By the proof of step 1, if P ’s preferences are not infected then (x̂P
d , ŷ

P
d ) must be

such that x∗
P (x̂

P
d , ŷ

P
d ) = x̂P

2 and x∗
V (x̂

P
d , ŷ

P
d ) = x̂V

2 . Thus, if P is not infected then (x̂P
d , ŷ

P
d )

solves:

max
x,y

uP1(x) + v1(y) + ρuP2(x̂
P
2 ) + (1− ρ)uP2(x̂

V
2 ) (39)

s.t. uV 2(x̂
P
2 ) ≥ uV 2(x) + v2(y) (40)

uP2(x̂
V
2 ) ≥ uP2(x) + v2(y) (41)

P ’s dynamic ideal point (x̂P
d , x̂

V
2 ) needs to solve the KKT conditions of this problem,
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which are given by:

u′
P1(x)− λ1u

′
V 2(x)− λ2u

′
P2(x) = 0 (42)

v′1(y)− λ1v
′
2(y)− λ2v

′
2(y) = 0 (43)

λ1

[
uV 2(x̂

P
2 )− uV 2(x)− v2(y)

]
= 0 (44)

λ2

[
uP2(x̂

V
2 )− uP2(x)− v2(y)

]
= 0. (45)

First, suppose λ1 or λ2 ̸= 0 and y = ŷ1. Then equation (43) reduces to −(λ1+λ2)v
′
2(ŷ1) < 0.

Thus, if P ’s preference are not infected it must be that neither constraint is binding.

Second, let λ1 = λ2 = 0. Then, (x̂P
d , x̂

V
2 ) must solve u′

P1(x) = 0 and v′1(y) = 0 and thus

(x̂P
d , x̂

V
2 ) = (x̂P

1 , ŷ1). However, by assumption, either: (i) uV 2(x̂
P
2 ) < uV 2(x̂

P
1 ) + v2(ŷ1); or (ii)

uP2(x̂
V
2 ) < uP2(x̂

V
1 )+v2(ŷ1). If uV 2(x̂

P
2 ) < uV 2(x̂

P
1 )+v2(ŷ1) holds this immediately yields that

(x̂P
1 , ŷ1) is not a feasible solution, specifically, if violates (40). If instead uP2(x̂

V
2 ) < uP2(x̂

V
1 )+

v2(ŷ1) holds then note that uP2(x̂
V
1 ) < uP2(x̂

P
1 ), which implies uP2(x̂

V
2 ) < uP2(x̂

V
1 )+v2(ŷ1) <

uP2(x̂
P
1 ) + v2(ŷ1). Hence, (x̂1, ŷ1) is not feasible as it violates constraint (41). Analogous

arguments yield that if uV 2(x̂
P
2 ) < uV 2(x̂

P
1 ) + v2(ŷ1) or uP2(x̂

V
2 ) < uP2(x̂

V
1 ) + v2(ŷ1) then V ’s

preferences must be infected as well.

Proposition 6. Suppose each player i’s dynamic ideal point is such that xV (x̂
i
d, ŷ

i
d) < x̂P

2

and xP (x̂
i
d, ŷ

i
d) > x̂V

2 . Then, ŷ
P
d is decreasing in ρ and ŷVd is increasing in ρ.

Proof. The result follows from the proof of Step 1 Part 1 of Proposition 5.

A.4 Proofs for Long-run Outcomes Extension

We write player i’s continuation payoff from strategy starting at time t as wi
t(x

q
t , y

q
t ), sup-

pressing dependence on the strategy profile. With this notation in hand, a strategy profile

constitutes an equilibrium if for all status quo policies (xq, yq) and all t, the following condi-

tions hold:
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• for any proposal (x, y), V accepts if and only if

uV t(x) + vt(y) + wV
t+1

(
x, y
)
≥ uV t(x

q
t ) + vt(y

q
t ) + wV

t+1

(
xq
t , y

q
t

)
.

• P ’s proposal, x∗
t (x

q, yq), solves

max
(x,y)

uPt(x) + vt(y) + wP
t+1

(
x, y
)

s.t. uV t(x) + vt(y) + wV
t+1

(
x, y
)
≥ uV t(x

q
t ) + vt(y

q
t ) + wV

t+1

(
xq
t , y

q
t

)
.

Proposition 7. If η < 1
2
then there exists t̂ < T such that the equilibrium policy outcome is

x∗
t = x̂P

t and y∗t = ŷt in every period t ≥ t̂. Furthermore, for γ sufficiently large t̂ = 1.

Proof. First, we show that if t is sufficiently large then in equilibrium R proposes x∗
t = x̂P

t

and y∗t = ŷt whenever the status quo is such that uVt(x̂
P
t ) + vt(ŷt) ≥ uVt(x

q
t ) + vt(y

q
t ) and V

accepts the proposal.

To start, we establish that V ’s static payoff in period t from getting P ’s ideal point

(x̂P
t , ŷt) is greater than its payoff from getting P ’s ideal point from the previous period t− 1

(x̂P
t−1, ŷt−1) whenever t is sufficiently large. More precisely, we claim that for t sufficiently

large:

−
(
tη + tη

)2
> −

(
(t− 1)η + tη

)2 − (γ(t− 1)− γt
)2
. (46)

To see that (46) holds for t sufficiently large, note that when η < 1
2
:

lim
t→∞

−
(
tη + tη

)2
+
(
(t− 1)η + tη

)2
= 0,

whereas, −
(
γ(t − 1) − γt

)2
= −γ2 < 0 for all t. Thus, under the proposed strategies, for t

sufficiently large if V accepts P ’s static ideal point in period t then it is willing to accept

P ’s static ideal point in period t+ 1.
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Clearly, P has no incentive to deviate given the proposed strategies. Next, consider V .

V is willing to accept the proposal if rejecting today leads to P making the same form of

proposal tomorrow, since given the strategies V accepts which thus yields the same dynamic

utility to V and by construction it is statically optimal to accept. Thus, we need to show that

if t is sufficiently large and uVt(x̂
P
t )+vt(ŷt) ≥ uVt(x

q
t )+vt(y

q
t ) then uVt+1(x̂

P
t+1)+vt+1(ŷt+1) ≥

uVt+1(x
q
t ) + vt+1(y

q
t ).

Writing the condition as uVt(x̂
P
t ) + vt(ŷt) − uVt(x

q
t ) − vt(y

q
t ) ≥ 0 we have that the same

condition will hold in the next period if the LHS of the condition is increasing in t. Differ-

entiating yields

2ηtn−1(xq + tn)− 2γ(yq − γt)− 8ηt2n−1.

Rearranging this is positive if and only if

yq <
1

γ
ηtη−1

[
xq − 3tη

]
+ γt (47)

As t → ∞ the RHS of (47) goes to infinity when η < 1
2
and γ > 0. Thus, as yq ≤ γT for all

t there exists a t′ such that for all t ≥ t′ the statement holds.

This implies that P ’s unconstrained optimal policy in any period t ≥ t′ is (x̂P
t , ŷ

t). Thus,

if P does not get its unconstrained optimal in a period then P must be choosing (x, y) to

make V indifferent between accepting and rejecting. Therefore, if there is an equilibrium

such that for all t party P does not propose (x̂P
t , ŷt) then V ’s dynamic payoff is given by:

∞∑
t=0

uVt(x
q
1) + vt(y

q
1).

However, by η < 1/2 there is some period t′′ such that starting in t′′ the dynamic payoff

to V from getting (x̂P
t , ŷt) every period is greater than this dynamic payoff from the initial

status quo, which contradicts that this is an equilibrium.
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Finally, note that for γ sufficiently large (47) holds for t = 1.

Proposition 8. Assume η > 1. There exists t̃ < T such that y∗t ̸= ŷt in every period

t ∈ {t̃, ..., T − 1}. If γ is sufficiently small then t̃ = 1.

Proof. We break the argument into several steps.

Step 1. In Step 1 we argue that if T is sufficiently large then at T − 1 the policy outcome

must be inefficient. If η > 1
2
then limT→∞−(T η + T η)2 +

(
(T − 1)η + T η

)2
= −∞, while

−
(
γ(T−1)−γT

)2
= −γ2 for all T . Therefore, uV T (x̂

P
T ) < uV T (x̂

P
T−1)+vT (ŷT−1) and y∗T ̸= ŷT

by Propositions 2 and 3.

Step 2. Now, we characterize the continuation payoffs beginning in period T − 1. Note that

P ’s optimal proposal will be constrained in period T . Thus, if P is constrained in T − 1,

uV T−1(x̂
P
d ) + vT−1(ŷ

P
d ) + uV T (x̂

P
d ) + vT (ŷ

P
d ) ≤ uV T−1(x̂

q) + vT−1(ŷ
q) + uV T (x̂

q) + vT (ŷ
q) then

∂wV
T−1

∂yq
= v′T−1(y

q) + v′T (y
q) and

∂wV
T−1

∂xq = u′
V T−1(x

q) + u′
V T (x

q). On the other hand, if P

is unconstrained then both of these derivatives are 0. Furthermore, the envelope theorem

delivers that wP
T−1(x

q, yq) is differentiable almost everywhere in xq and yq, with

∂wP
T−1

∂yq
=


−λ∗

T−1

∂wV
T−1

∂yq
if P is constrained,

0 otherwise.

∂wP
T−1

∂xq
=


−λ∗

T−1

∂wV
T−1

∂xq if P is constrained,

0 otherwise.

Step 3. We now show that if the period t equilibrium policy is inefficient and continuation

payoffs have the analogous properties to those characterized for the T − 1 case in Step 2,

then the equilibrium policy in period t − 1 is inefficient and continuation payoffs have the
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same form as in T − 1. The induction argument together with Steps 1 and 2 as the base

case then delivers the proposition.

Suppose y∗t ̸= ŷt and the derivatives for each player’s continuation payoffs wV
t (x

q
t , y

q
t ) and

wP
t (x

q
t , y

q
t ) have the same form as at T − 1. In period t− 1 P ’s optimal proposal solves:

max
(x,y)

uPt−1(x) + vt−1(y) + wP
t (x, y)

s.t. uV t−1(x) + vt−1(y) + wV
t (x, y) ≥ uV t−1(x

q
t−1) + vt−1(y

q
t−1) + wV

t (x
q
t−1, y

q
t−1).

We break the argument into two parts, depending on whether the veto player’s constraint

is binding at time t− 1.

If P chooses a policy where the constraint does not bind then (x∗
t−1, y

∗
t−1) solves:

u′
Pt−1(x) +

∂wP
t

∂x
= 0 (48)

v′t−1(y) +
∂wP

t

∂y
= 0. (49)

Thus, for ŷt−1 to be optimal requires that
∂wP

t

∂y
|y=ŷt−1 = 0 which implies that P is also

unconstrained at time t. If P is unconstrained at time t then
∂wP

t

∂x
= 0, and for (48) to also

hold requires x∗
t−1 = x̂P

t−1. However, this contradicts that P is unconstrained at period t, as

P ’s unconstrained optimal policy at time t sets x∗
t > x̂P

t > x̂P and y∗t > ŷt > ŷt−1. Thus, at

time t accepting such a (x∗
t , y

∗
t ) is strictly worse for V than rejecting to keep (x̂P

t , ŷt−1).

Next, suppose that P chooses a policy when the veto constraint is binding. Then

(x∗
t−1, y

∗
t−1, λ

∗
t−1) solves:

u′
Pt−1(x) +

∂wP
t

∂x
+ λ
[
u′
V t−1(x) +

∂wV
t

∂x

]
= 0 (50)

v′t−1(y) +
∂wP

t

∂y
+ λ
[
v′t−1(y) +

∂wV
t

∂y

]
= 0 (51)

λ
[
uV t−1(x) + vt−1(y) + wV

t (x, y)− uV t−1(x
q
t−1)− vt−1(y

q
t−1)− wV

t (x
q
t−1, y

q
t−1)

]
= 0 (52)
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Since the constraint is binding we have λ > 0. Solving for λ and rearranging, for (50)-(52)

to hold at y = ŷt−1 requires that x∗
t−1 satisfies:

∂wV
t

∂y

∣∣∣
y=ŷt−1

(
u′
Pt−1(x) +

∂wP
t

∂x

)
− ∂wP

t

∂y

∣∣∣
y=ŷt−1

(
u′
V t−1(x) +

∂wV
t

∂x

)
= 0 (53)

uV t−1(x) + wV
t (x, ŷt−1) = uV t−1(x

q
t−1) + vt−1(y

q
t−1) + wV

t (x
q
t−1, y

q
t−1). (54)

The LHS of (54) is decreasing in x, thus there is at most one x which solves it. Additionally,

because u is quadratic, the LHS of (53) is linear in x. However, the first equality does not

depend on the status quo, and thus any perturbation of the initial status quo only changes

the solution to (54) and there cannot be an x∗
t−1 that satisfies (53) and (54) for almost all

(xq
1, y

q
1).

Finally, note that if the constraint is not binding, uV t−1(x
∗
t−1)+vt−1(y

∗
t−1)+wV

t (x
∗
t−1, y

∗
t−1) >

uV t−1(x
q
t−1) + vt−1(y

q
t−1) + wV

t (x
q
t−1, y

q
t−1), then

∂wV
t−1

∂yqt−1
=

∂wV
t−1

∂xq
t−1

= 0 and the envelope the-

orem delivers that also
∂wP

t−1

∂yqt−1
=

∂wP
t−1

∂xq
t−1

= 0. Instead, if the constraint is binding then

wt−1(x
q
t−1, y

q
t−1) = uV t−1(x

q
t−1) + vt−1(y

q
t−1) +wV

t (x
q
t−1, y

q
t−1). Therefore,

∂wV
t−1

∂yqt−1
= v′t−1(y

q
t−1) +

∂wV
t

∂yqt−1
and

∂wV
t−1

∂xq
t−1

= u′
V t−1(y

q
t−1) +

∂wV
t

∂xq
t−1

. Again the envelope theorem yields
∂wP

t−1

∂xy
t−1

= −λ∗ ∂w
V
t−1

∂xq
t−1

and
∂wP

t−1

∂xq
t−1

= −λ∗ ∂w
V
t−1

∂xq
t−1

. Thus, the derivatives of the continuation payoffs at t − 1 have the

desired form as well.

A.5 Different Weights on Dimensions

Here we consider the baseline model where v(y) ≡ v1(y) = v2(y), so there is no change in

preferences on the Y dimension, but we assume that the two players put different weights

on the two dimensions. Specifically, assume that the proposer’s stage utility is

uPt(x) + θv(y),
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with θ > 0. As in the baseline, the veto player’s stage utility is instead

uV t(x) + v(y).

Further, assume that ŷ1 = ŷ2 = ŷ, so that the optimal policy on the Y dimension remains

constant across periods.

Here, we show that a policy pair such that x∗
1 < x̂P

1 and y∗1 < ŷ can never be sustained

in equilibrium. Clearly, if Uq is such that the proposer is unconstrained in the first period,

the equilibrium policy must satisfy x∗
1 > x̂P

1 .

Suppose instead that Uq is sufficiently high that the proposer is constrained in the first

period. To establish a contradiction, suppose that x∗
1 < x̂P

1 , y
∗
1 < ŷ is an equilibrium. Recall

that x̄(x∗
1, y

∗
1) solves uV 2(x) = uV 2(x

∗
1)+v2(y

∗
1). Further, (x

∗
1, y

∗) must solve uV 1(x
∗
1)+v(y∗1)+

uV 2(x
∗
1)+v(y∗1) = Uq. Let x̃ denote the policy that solves uV 1(x)+uV 2(x) = Uq. Suppose that

uV 2(x̃) ≤ uV 2(x
∗
1) + v(y∗1). Then, it must be the case that a deviation to (x̃, ŷ) is profitable

for the proposer, as this bundle is passable by definition and improves the proposer’s payoff

if this inequality is satisfied. Suppose instead uV 2(x̃) > uV 2(x
∗
1) + v(y∗1). Then, the above

equations imply that uV 1(x̃) < uV 1(x
∗
1) + v(y∗1), otherwise uV 2(x̃) > uV 2(x

∗
1) + v(y∗1) and

uV 1(x̃) + uV 2(x̃) = Uq would imply uV 1(x
∗
1) + v(y∗1) + uV 2(x

∗
1) + v(y∗1) > Uq. Therefore, given

concavity and the assumption that x̂V 2 ≤ x̂V 1, the following holds: −v(y∗1) < uV 1(x
∗
1) −

uV 1(x̃) < uV 2(x
∗
1)− uV 2(x̃). Thus, uV 2(x̃) < uV 2(x

∗
1) + v(y∗1), a contradiction.

Finally, note that, as in Acharya and Ortner (2013) and Lee (2020), the proposer may

still want to implement an inefficient policy on the common-values dimension in this setting,

ŷPd < ŷ1. To see this, consider the first-order conditions that (x̂P
d , ŷ

P
d ) must solve, assuming

x(x̂P
1 , ŷ1) < x̂P

2 so that P cannot just achieve its ideal point both periods:
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u′
P1(x) +

u′
P2

(
x(x, y)

)
u′
V 2

(
x(x, y)

)u′
V 2

(
x
)
= 0 (55)

θv′(y) +
u′
P2

(
x(x, y)

)
u′
V 2

(
x(x, y)

)v′(y) = 0 (56)

There is always a solution to these necessary first-order conditions where y = ŷ and x

solves u′
P1(x) + u′

P2(x). Indeed, if θ is sufficiently large this solution does maximize P ’s

payoff, as maintaining inefficiency for tomorrow is costly. However, when θ is sufficiently

small P weights the costs of inefficiency less than V and y < ŷ can instead be better. In

this case, from condition (56) we require that θ = −u′
P2

(
x(x,y)

)
u′
V 2

(
x(x,y)

) . When θ is small this implies

that x and y are such that x(x, y) is close to x̂P
2 . Additionally, this condition together with

(55) implies that the policy on the X dimension solves u′
P1(x) − θu′

v2(x) = 0, and hence

x is close to x̂P
1 for θ small. Thus, for θ sufficiently low the inefficient solution yields a

better first-period policy on X, a better second-period policy on X, and the cost from the

inefficiency is relatively negligible.

For example, suppose uit(x) = −(x − x̂)2, with x̂P
1 = −x̂V

1 = 1 and x̂P
2 = −x̂v

2 = 2.

Additionally, let v(y) = −(y − 1)2 and θ = 1
8
. Then (x̂P

d , ŷ
P
d ) ≈ (1.43, .058) which gives a

dynamic payoff of ≈ −.49, versus the best efficient policy (x, y) = (1.5, 1) which yields −.5.
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